visualize.py 7.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# coding: utf-8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import cv2
import numpy as np
from PIL import Image, ImageDraw
from scipy import ndimage


G
Guanghua Yu 已提交
24
def visualize_box_mask(im, results, labels, threshold=0.5):
Q
qingqing01 已提交
25 26 27 28 29 30
    """
    Args:
        im (str/np.ndarray): path of image/np.ndarray read by cv2
        results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                        matix element:[class, score, x_min, y_min, x_max, y_max]
                        MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
31
                        shape:[N, im_h, im_w]
Q
qingqing01 已提交
32 33 34 35 36 37 38 39 40 41 42
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): Threshold of score.
    Returns:
        im (PIL.Image.Image): visualized image
    """
    if isinstance(im, str):
        im = Image.open(im).convert('RGB')
    else:
        im = Image.fromarray(im)
    if 'masks' in results and 'boxes' in results:
        im = draw_mask(
G
Guanghua Yu 已提交
43
            im, results['boxes'], results['masks'], labels, threshold=threshold)
Q
qingqing01 已提交
44
    if 'boxes' in results:
G
Guanghua Yu 已提交
45
        im = draw_box(im, results['boxes'], labels, threshold=threshold)
Q
qingqing01 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    if 'segm' in results:
        im = draw_segm(
            im,
            results['segm'],
            results['label'],
            results['score'],
            labels,
            threshold=threshold)
    return im


def get_color_map_list(num_classes):
    """
    Args:
        num_classes (int): number of class
    Returns:
        color_map (list): RGB color list
    """
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    return color_map


G
Guanghua Yu 已提交
78
def draw_mask(im, np_boxes, np_masks, labels, threshold=0.5):
Q
qingqing01 已提交
79 80 81 82
    """
    Args:
        im (PIL.Image.Image): PIL image
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
G
Guanghua Yu 已提交
83 84
            matix element:[class, score, x_min, y_min, x_max, y_max]
        np_masks (np.ndarray): shape:[N, im_h, im_w]
Q
qingqing01 已提交
85 86 87 88 89 90 91 92 93 94
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): threshold of mask
    Returns:
        im (PIL.Image.Image): visualized image
    """
    color_list = get_color_map_list(len(labels))
    w_ratio = 0.4
    alpha = 0.7
    im = np.array(im).astype('float32')
    clsid2color = {}
G
Guanghua Yu 已提交
95 96 97 98 99 100
    expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
    np_boxes = np_boxes[expect_boxes, :]
    np_masks = np_masks[expect_boxes, :, :]
    for i in range(len(np_masks)):
        clsid, score = int(np_boxes[i][0]), np_boxes[i][1]
        mask = np_masks[i]
Q
qingqing01 已提交
101 102 103 104 105
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color_mask = clsid2color[clsid]
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
G
Guanghua Yu 已提交
106
        idx = np.nonzero(mask)
Q
qingqing01 已提交
107 108 109 110 111 112
        color_mask = np.array(color_mask)
        im[idx[0], idx[1], :] *= 1.0 - alpha
        im[idx[0], idx[1], :] += alpha * color_mask
    return Image.fromarray(im.astype('uint8'))


G
Guanghua Yu 已提交
113
def draw_box(im, np_boxes, labels, threshold=0.5):
Q
qingqing01 已提交
114 115 116 117 118 119
    """
    Args:
        im (PIL.Image.Image): PIL image
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
                               matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
G
Guanghua Yu 已提交
120
        threshold (float): threshold of box
Q
qingqing01 已提交
121 122 123 124 125 126 127
    Returns:
        im (PIL.Image.Image): visualized image
    """
    draw_thickness = min(im.size) // 320
    draw = ImageDraw.Draw(im)
    clsid2color = {}
    color_list = get_color_map_list(len(labels))
G
Guanghua Yu 已提交
128 129
    expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
    np_boxes = np_boxes[expect_boxes, :]
Q
qingqing01 已提交
130 131 132 133

    for dt in np_boxes:
        clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
        xmin, ymin, xmax, ymax = bbox
G
Guanghua Yu 已提交
134 135 136
        print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
              'right_bottom:[{:.2f},{:.2f}]'.format(
                  int(clsid), score, xmin, ymin, xmax, ymax))
Q
qingqing01 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        w = xmax - xmin
        h = ymax - ymin
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color = tuple(clsid2color[clsid])

        # draw bbox
        draw.line(
            [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
             (xmin, ymin)],
            width=draw_thickness,
            fill=color)

        # draw label
        text = "{} {:.4f}".format(labels[clsid], score)
        tw, th = draw.textsize(text)
        draw.rectangle(
            [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
        draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
    return im


def draw_segm(im,
              np_segms,
              np_label,
              np_score,
              labels,
              threshold=0.5,
              alpha=0.7):
    """
    Draw segmentation on image
    """
    mask_color_id = 0
    w_ratio = .4
    color_list = get_color_map_list(len(labels))
    im = np.array(im).astype('float32')
    clsid2color = {}
    np_segms = np_segms.astype(np.uint8)
    for i in range(np_segms.shape[0]):
        mask, score, clsid = np_segms[i], np_score[i], np_label[i] + 1
        if score < threshold:
            continue

        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color_mask = clsid2color[clsid]
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
        idx = np.nonzero(mask)
        color_mask = np.array(color_mask)
        im[idx[0], idx[1], :] *= 1.0 - alpha
        im[idx[0], idx[1], :] += alpha * color_mask
        sum_x = np.sum(mask, axis=0)
        x = np.where(sum_x > 0.5)[0]
        sum_y = np.sum(mask, axis=1)
        y = np.where(sum_y > 0.5)[0]
        x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
        cv2.rectangle(im, (x0, y0), (x1, y1),
                      tuple(color_mask.astype('int32').tolist()), 1)
        bbox_text = '%s %.2f' % (labels[clsid], score)
        t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
        cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3),
                      tuple(color_mask.astype('int32').tolist()), -1)
        cv2.putText(
            im,
            bbox_text, (x0, y0 - 2),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.3, (0, 0, 0),
            1,
            lineType=cv2.LINE_AA)
    return Image.fromarray(im.astype('uint8'))