未验证 提交 fb7c750c 编写于 作者: L littletomatodonkey 提交者: GitHub

Update distilled_vision_transformer.py

上级 e08e45e5
......@@ -16,7 +16,6 @@ import paddle
import paddle.nn as nn
from .vision_transformer import VisionTransformer, Identity, trunc_normal_, zeros_
__all__ = [
'DeiT_tiny_patch16_224', 'DeiT_small_patch16_224', 'DeiT_base_patch16_224',
'DeiT_tiny_distilled_patch16_224', 'DeiT_small_distilled_patch16_224',
......@@ -26,14 +25,33 @@ __all__ = [
class DistilledVisionTransformer(VisionTransformer):
def __init__(self, img_size=224, patch_size=16, class_dim=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4, qkv_bias=False, norm_layer='nn.LayerNorm', epsilon=1e-5,
def __init__(self,
img_size=224,
patch_size=16,
class_dim=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=False,
norm_layer='nn.LayerNorm',
epsilon=1e-5,
**kwargs):
super().__init__(img_size=img_size, patch_size=patch_size, class_dim=class_dim, embed_dim=embed_dim, depth=depth,
num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, epsilon=epsilon,
**kwargs)
super().__init__(
img_size=img_size,
patch_size=patch_size,
class_dim=class_dim,
embed_dim=embed_dim,
depth=depth,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
epsilon=epsilon,
**kwargs)
self.pos_embed = self.create_parameter(
shape=(1, self.patch_embed.num_patches + 2, self.embed_dim), default_initializer=zeros_)
shape=(1, self.patch_embed.num_patches + 2, self.embed_dim),
default_initializer=zeros_)
self.add_parameter("pos_embed", self.pos_embed)
self.dist_token = self.create_parameter(
......@@ -41,14 +59,15 @@ class DistilledVisionTransformer(VisionTransformer):
self.add_parameter("cls_token", self.cls_token)
self.head_dist = nn.Linear(
self.embed_dim, self.class_dim) if self.class_dim > 0 else Identity()
self.embed_dim,
self.class_dim) if self.class_dim > 0 else Identity()
trunc_normal_(self.dist_token)
trunc_normal_(self.pos_embed)
self.head_dist.apply(self._init_weights)
def forward_features(self, x):
B = x.shape[0]
B = paddle.shape(x)[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand((B, -1, -1))
......@@ -73,55 +92,105 @@ class DistilledVisionTransformer(VisionTransformer):
def DeiT_tiny_patch16_224(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
epsilon=1e-6, **kwargs)
patch_size=16,
embed_dim=192,
depth=12,
num_heads=3,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
def DeiT_small_patch16_224(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
epsilon=1e-6, **kwargs)
patch_size=16,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
def DeiT_base_patch16_224(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
epsilon=1e-6, **kwargs)
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
def DeiT_tiny_distilled_patch16_224(**kwargs):
model = DistilledVisionTransformer(
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
epsilon=1e-6, **kwargs)
patch_size=16,
embed_dim=192,
depth=12,
num_heads=3,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
def DeiT_small_distilled_patch16_224(**kwargs):
model = DistilledVisionTransformer(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
epsilon=1e-6, **kwargs)
patch_size=16,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
def DeiT_base_distilled_patch16_224(**kwargs):
model = DistilledVisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
epsilon=1e-6, **kwargs)
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
def DeiT_base_patch16_384(**kwargs):
model = VisionTransformer(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
epsilon=1e-6, **kwargs)
img_size=384,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
def DeiT_base_distilled_patch16_384(**kwargs):
model = DistilledVisionTransformer(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
epsilon=1e-6, **kwargs)
img_size=384,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册