diff --git a/ppcls/modeling/architectures/distilled_vision_transformer.py b/ppcls/modeling/architectures/distilled_vision_transformer.py index f2f3f2abcd83e3667deac380d68c47dfb9ec2292..48fd25050629aab56b7ec59aeef06f77c0da7bea 100644 --- a/ppcls/modeling/architectures/distilled_vision_transformer.py +++ b/ppcls/modeling/architectures/distilled_vision_transformer.py @@ -16,7 +16,6 @@ import paddle import paddle.nn as nn from .vision_transformer import VisionTransformer, Identity, trunc_normal_, zeros_ - __all__ = [ 'DeiT_tiny_patch16_224', 'DeiT_small_patch16_224', 'DeiT_base_patch16_224', 'DeiT_tiny_distilled_patch16_224', 'DeiT_small_distilled_patch16_224', @@ -26,14 +25,33 @@ __all__ = [ class DistilledVisionTransformer(VisionTransformer): - def __init__(self, img_size=224, patch_size=16, class_dim=1000, embed_dim=768, depth=12, - num_heads=12, mlp_ratio=4, qkv_bias=False, norm_layer='nn.LayerNorm', epsilon=1e-5, + def __init__(self, + img_size=224, + patch_size=16, + class_dim=1000, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=False, + norm_layer='nn.LayerNorm', + epsilon=1e-5, **kwargs): - super().__init__(img_size=img_size, patch_size=patch_size, class_dim=class_dim, embed_dim=embed_dim, depth=depth, - num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, epsilon=epsilon, - **kwargs) + super().__init__( + img_size=img_size, + patch_size=patch_size, + class_dim=class_dim, + embed_dim=embed_dim, + depth=depth, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + norm_layer=norm_layer, + epsilon=epsilon, + **kwargs) self.pos_embed = self.create_parameter( - shape=(1, self.patch_embed.num_patches + 2, self.embed_dim), default_initializer=zeros_) + shape=(1, self.patch_embed.num_patches + 2, self.embed_dim), + default_initializer=zeros_) self.add_parameter("pos_embed", self.pos_embed) self.dist_token = self.create_parameter( @@ -41,14 +59,15 @@ class DistilledVisionTransformer(VisionTransformer): self.add_parameter("cls_token", self.cls_token) self.head_dist = nn.Linear( - self.embed_dim, self.class_dim) if self.class_dim > 0 else Identity() + self.embed_dim, + self.class_dim) if self.class_dim > 0 else Identity() trunc_normal_(self.dist_token) trunc_normal_(self.pos_embed) self.head_dist.apply(self._init_weights) def forward_features(self, x): - B = x.shape[0] + B = paddle.shape(x)[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand((B, -1, -1)) @@ -73,55 +92,105 @@ class DistilledVisionTransformer(VisionTransformer): def DeiT_tiny_patch16_224(**kwargs): model = VisionTransformer( - patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=192, + depth=12, + num_heads=3, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_small_patch16_224(**kwargs): model = VisionTransformer( - patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=384, + depth=12, + num_heads=6, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_base_patch16_224(**kwargs): model = VisionTransformer( - patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_tiny_distilled_patch16_224(**kwargs): model = DistilledVisionTransformer( - patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=192, + depth=12, + num_heads=3, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_small_distilled_patch16_224(**kwargs): model = DistilledVisionTransformer( - patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=384, + depth=12, + num_heads=6, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_base_distilled_patch16_224(**kwargs): model = DistilledVisionTransformer( - patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_base_patch16_384(**kwargs): model = VisionTransformer( - img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + img_size=384, + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_base_distilled_patch16_384(**kwargs): model = DistilledVisionTransformer( - img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + img_size=384, + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model