未验证 提交 f3a7cd42 编写于 作者: G gaotingquan

docs: update

上级 4fe5cd65
...@@ -212,14 +212,14 @@ You can save the prediction result(s) as pre-label, only need to use `pre_label_ ...@@ -212,14 +212,14 @@ You can save the prediction result(s) as pre-label, only need to use `pre_label_
```python ```python
from paddleclas import PaddleClas from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/') clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/inference_deployment/whl_' # it can be infer_imgs folder path which contains all of images you want to predict. infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs) result=clas.predict(infer_imgs)
print(next(result)) print(next(result))
``` ```
* CLI * CLI
```bash ```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deployment/whl_' --save_dir='./output_pre_label/' paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/'
``` ```
<a name="4.8"></a> <a name="4.8"></a>
......
...@@ -18,7 +18,7 @@ PaddleClas 支持 Python Whl 包方式进行预测,目前 Whl 包方式仅支 ...@@ -18,7 +18,7 @@ PaddleClas 支持 Python Whl 包方式进行预测,目前 Whl 包方式仅支
- [4.6 对 `NumPy.ndarray` 格式数据进行预测](#4.6) - [4.6 对 `NumPy.ndarray` 格式数据进行预测](#4.6)
- [4.7 保存预测结果](#4.7) - [4.7 保存预测结果](#4.7)
- [4.8 指定 label name](#4.8) - [4.8 指定 label name](#4.8)
<a name="1"></a> <a name="1"></a>
## 1. 安装 paddleclas ## 1. 安装 paddleclas
...@@ -212,14 +212,14 @@ print(next(result)) ...@@ -212,14 +212,14 @@ print(next(result))
```python ```python
from paddleclas import PaddleClas from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/') clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/whl/' # it can be infer_imgs folder path which contains all of images you want to predict. infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs) result=clas.predict(infer_imgs)
print(next(result)) print(next(result))
``` ```
* CLI * CLI
```bash ```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/whl/' --save_dir='./output_pre_label/' paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/'
``` ```
<a name="4.8"></a> <a name="4.8"></a>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册