From f3a7cd42a709f958a0077d68e7689f1746cb412f Mon Sep 17 00:00:00 2001 From: gaotingquan Date: Tue, 7 Jun 2022 11:49:27 +0000 Subject: [PATCH] docs: update --- docs/en/inference_deployment/whl_deploy_en.md | 4 ++-- docs/zh_CN/inference_deployment/whl_deploy.md | 6 +++--- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/docs/en/inference_deployment/whl_deploy_en.md b/docs/en/inference_deployment/whl_deploy_en.md index 224d41a7..9fd72232 100644 --- a/docs/en/inference_deployment/whl_deploy_en.md +++ b/docs/en/inference_deployment/whl_deploy_en.md @@ -212,14 +212,14 @@ You can save the prediction result(s) as pre-label, only need to use `pre_label_ ```python from paddleclas import PaddleClas clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/') -infer_imgs = 'docs/images/inference_deployment/whl_' # it can be infer_imgs folder path which contains all of images you want to predict. +infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict. result=clas.predict(infer_imgs) print(next(result)) ``` * CLI ```bash -paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deployment/whl_' --save_dir='./output_pre_label/' +paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/' ``` diff --git a/docs/zh_CN/inference_deployment/whl_deploy.md b/docs/zh_CN/inference_deployment/whl_deploy.md index 14582ace..e6ad7090 100644 --- a/docs/zh_CN/inference_deployment/whl_deploy.md +++ b/docs/zh_CN/inference_deployment/whl_deploy.md @@ -18,7 +18,7 @@ PaddleClas 支持 Python Whl 包方式进行预测,目前 Whl 包方式仅支 - [4.6 对 `NumPy.ndarray` 格式数据进行预测](#4.6) - [4.7 保存预测结果](#4.7) - [4.8 指定 label name](#4.8) - + ## 1. 安装 paddleclas @@ -212,14 +212,14 @@ print(next(result)) ```python from paddleclas import PaddleClas clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/') -infer_imgs = 'docs/images/whl/' # it can be infer_imgs folder path which contains all of images you want to predict. +infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict. result=clas.predict(infer_imgs) print(next(result)) ``` * CLI ```bash -paddleclas --model_name='ResNet50' --infer_imgs='docs/images/whl/' --save_dir='./output_pre_label/' +paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/' ``` -- GitLab