提交 f2982e5e 编写于 作者: H HydrogenSulfate

update code

...@@ -64,6 +64,7 @@ from ppcls.arch.backbone.model_zoo.cspnet import CSPDarkNet53 ...@@ -64,6 +64,7 @@ from ppcls.arch.backbone.model_zoo.cspnet import CSPDarkNet53
from ppcls.arch.backbone.model_zoo.pvt_v2 import PVT_V2_B0, PVT_V2_B1, PVT_V2_B2_Linear, PVT_V2_B2, PVT_V2_B3, PVT_V2_B4, PVT_V2_B5 from ppcls.arch.backbone.model_zoo.pvt_v2 import PVT_V2_B0, PVT_V2_B1, PVT_V2_B2_Linear, PVT_V2_B2, PVT_V2_B3, PVT_V2_B4, PVT_V2_B5
from ppcls.arch.backbone.model_zoo.mobilevit import MobileViT_XXS, MobileViT_XS, MobileViT_S from ppcls.arch.backbone.model_zoo.mobilevit import MobileViT_XXS, MobileViT_XS, MobileViT_S
from ppcls.arch.backbone.model_zoo.repvgg import RepVGG_A0, RepVGG_A1, RepVGG_A2, RepVGG_B0, RepVGG_B1, RepVGG_B2, RepVGG_B1g2, RepVGG_B1g4, RepVGG_B2g4, RepVGG_B3g4 from ppcls.arch.backbone.model_zoo.repvgg import RepVGG_A0, RepVGG_A1, RepVGG_A2, RepVGG_B0, RepVGG_B1, RepVGG_B2, RepVGG_B1g2, RepVGG_B1g4, RepVGG_B2g4, RepVGG_B3g4
from ppcls.arch.backbone.model_zoo.van import VAN_tiny
from ppcls.arch.backbone.variant_models.resnet_variant import ResNet50_last_stage_stride1 from ppcls.arch.backbone.variant_models.resnet_variant import ResNet50_last_stage_stride1
from ppcls.arch.backbone.variant_models.vgg_variant import VGG19Sigmoid from ppcls.arch.backbone.variant_models.vgg_variant import VGG19Sigmoid
from ppcls.arch.backbone.variant_models.pp_lcnet_variant import PPLCNet_x2_5_Tanh from ppcls.arch.backbone.variant_models.pp_lcnet_variant import PPLCNet_x2_5_Tanh
......
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was heavily based on https://github.com/Visual-Attention-Network/VAN-Classification
from functools import partial
import math
import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"VAN_tiny": "", # TODO
}
__all__ = list(MODEL_URLS.keys())
trunc_normal_ = TruncatedNormal(std=.02)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)
def drop_path(x, drop_prob=0., training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
@paddle.jit.not_to_static
def swapdim(x, dim1, dim2):
a = list(range(len(x.shape)))
a[dim1], a[dim2] = a[dim2], a[dim1]
return x.transpose(a)
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2D(in_features, hidden_features, 1)
self.dwconv = DWConv(hidden_features)
self.act = act_layer()
self.fc2 = nn.Conv2D(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.dwconv(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class LKA(nn.Layer):
def __init__(self, dim):
super().__init__()
self.conv0 = nn.Conv2D(dim, dim, 5, padding=2, groups=dim)
self.conv_spatial = nn.Conv2D(
dim, dim, 7, stride=1, padding=9, groups=dim, dilation=3)
self.conv1 = nn.Conv2D(dim, dim, 1)
def forward(self, x):
attn = self.conv0(x)
attn = self.conv_spatial(attn)
attn = self.conv1(attn)
return x * attn
class Attention(nn.Layer):
def __init__(self, d_model):
super().__init__()
self.proj_1 = nn.Conv2D(d_model, d_model, 1)
self.activation = nn.GELU()
self.spatial_gating_unit = LKA(d_model)
self.proj_2 = nn.Conv2D(d_model, d_model, 1)
def forward(self, x):
shorcut = x
x = self.proj_1(x)
x = self.activation(x)
x = self.spatial_gating_unit(x)
x = self.proj_2(x)
x = x + shorcut
return x
class Block(nn.Layer):
def __init__(self,
dim,
mlp_ratio=4.,
drop=0.,
drop_path=0.,
act_layer=nn.GELU):
super().__init__()
self.norm1 = nn.BatchNorm2D(dim)
self.attn = Attention(dim)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = nn.BatchNorm2D(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
layer_scale_init_value = 1e-2
self.layer_scale_1 = self.create_parameter(
shape=[dim, 1, 1],
default_initializer=Constant(value=layer_scale_init_value))
self.layer_scale_2 = self.create_parameter(
shape=[dim, 1, 1],
default_initializer=Constant(value=layer_scale_init_value))
def forward(self, x):
x = x + self.drop_path(self.layer_scale_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.layer_scale_2 * self.mlp(self.norm2(x)))
return x
class OverlapPatchEmbed(nn.Layer):
""" Image to Patch Embedding
"""
def __init__(self,
img_size=224,
patch_size=7,
stride=4,
in_chans=3,
embed_dim=768):
super().__init__()
self.proj = nn.Conv2D(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=stride,
padding=patch_size // 2)
self.norm = nn.BatchNorm2D(embed_dim)
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = self.norm(x)
return x, H, W
class VAN(nn.Layer):
r""" VAN
A PaddlePaddle impl of : `Visual Attention Network` -
https://arxiv.org/pdf/2202.09741.pdf
"""
def __init__(self,
img_size=224,
in_chans=3,
class_num=1000,
embed_dims=[64, 128, 256, 512],
mlp_ratios=[4, 4, 4, 4],
drop_rate=0.,
drop_path_rate=0.,
norm_layer=nn.LayerNorm,
depths=[3, 4, 6, 3],
num_stages=4,
flag=False):
super().__init__()
if flag == False:
self.class_num = class_num
self.depths = depths
self.num_stages = num_stages
dpr = [x for x in paddle.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
cur = 0
for i in range(num_stages):
patch_embed = OverlapPatchEmbed(
img_size=img_size if i == 0 else img_size // (2**(i + 1)),
patch_size=7 if i == 0 else 3,
stride=4 if i == 0 else 2,
in_chans=in_chans if i == 0 else embed_dims[i - 1],
embed_dim=embed_dims[i])
block = nn.LayerList([
Block(
dim=embed_dims[i],
mlp_ratio=mlp_ratios[i],
drop=drop_rate,
drop_path=dpr[cur + j]) for j in range(depths[i])
])
norm = norm_layer(embed_dims[i])
cur += depths[i]
setattr(self, f"patch_embed{i + 1}", patch_embed)
setattr(self, f"block{i + 1}", block)
setattr(self, f"norm{i + 1}", norm)
# classification head
self.head = nn.Linear(embed_dims[3],
class_num) if class_num > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
m.weight.set_value(
paddle.normal(
std=math.sqrt(2.0 / fan_out), shape=m.weight.shape))
if m.bias is not None:
zeros_(m.bias)
def forward_features(self, x):
B = x.shape[0]
for i in range(self.num_stages):
patch_embed = getattr(self, f"patch_embed{i + 1}")
block = getattr(self, f"block{i + 1}")
norm = getattr(self, f"norm{i + 1}")
x, H, W = patch_embed(x)
for blk in block:
x = blk(x)
x = x.flatten(2)
x = swapdim(x, 1, 2)
x = norm(x)
if i != self.num_stages - 1:
x = x.reshape([B, H, W, x.shape[2]]).transpose([0, 3, 1, 2])
return x.mean(axis=1)
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
class DWConv(nn.Layer):
def __init__(self, dim=768):
super().__init__()
self.dwconv = nn.Conv2D(dim, dim, 3, 1, 1, bias_attr=True, groups=dim)
def forward(self, x):
x = self.dwconv(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def VAN_tiny(pretrained=False, use_ssld=False, **kwargs):
model = VAN(embed_dims=[32, 64, 160, 256],
mlp_ratios=[8, 8, 4, 4],
norm_layer=partial(
nn.LayerNorm, epsilon=1e-6),
depths=[3, 3, 5, 2],
**kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["VAN_tiny"], use_ssld=use_ssld)
return model
...@@ -34,10 +34,10 @@ Loss: ...@@ -34,10 +34,10 @@ Loss:
# mixed precision training # mixed precision training
AMP: AMP:
scale_loss: 128.0 scale_loss: 128.0
use_dynamic_loss_scaling: True use_dynamic_loss_scaling: True
# O2: pure fp16 # O2: pure fp16
level: O2 level: O2
Optimizer: Optimizer:
name: Momentum name: Momentum
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
# model architecture
Arch:
name: VAN_tiny
class_num: 1000
drop_path_rate: 0.1
drop_rate: 0.0
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.05
one_dim_param_no_weight_decay: True
lr:
name: Cosine
learning_rate: 1e-3
eta_min: 1e-6
warmup_epoch: 5
warmup_start_lr: 1e-6
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
interpolation: random
backend: pil
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m9-mstd0.5-inc1
interpolation: random
img_size: 224
mean: [0.5, 0.5, 0.5]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.8
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: DistributedBatchSampler
batch_size: 256
drop_last: True
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 248
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 256
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 248
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Eval:
- TopkAcc:
topk: [1, 5]
...@@ -38,7 +38,8 @@ class UnifiedResize(object): ...@@ -38,7 +38,8 @@ class UnifiedResize(object):
'bilinear': cv2.INTER_LINEAR, 'bilinear': cv2.INTER_LINEAR,
'area': cv2.INTER_AREA, 'area': cv2.INTER_AREA,
'bicubic': cv2.INTER_CUBIC, 'bicubic': cv2.INTER_CUBIC,
'lanczos': cv2.INTER_LANCZOS4 'lanczos': cv2.INTER_LANCZOS4,
'random': (cv2.INTER_LINEAR, cv2.INTER_CUBIC)
} }
_pil_interp_from_str = { _pil_interp_from_str = {
'nearest': Image.NEAREST, 'nearest': Image.NEAREST,
...@@ -46,10 +47,18 @@ class UnifiedResize(object): ...@@ -46,10 +47,18 @@ class UnifiedResize(object):
'bicubic': Image.BICUBIC, 'bicubic': Image.BICUBIC,
'box': Image.BOX, 'box': Image.BOX,
'lanczos': Image.LANCZOS, 'lanczos': Image.LANCZOS,
'hamming': Image.HAMMING 'hamming': Image.HAMMING,
'random': (Image.BILINEAR, Image.BICUBIC)
} }
def _cv2_resize(src, size, resample):
if isinstance(resample, tuple):
resample = random.choice(resample)
return cv2.resize(src, size, interpolation=resample)
def _pil_resize(src, size, resample): def _pil_resize(src, size, resample):
if isinstance(resample, tuple):
resample = random.choice(resample)
pil_img = Image.fromarray(src) pil_img = Image.fromarray(src)
pil_img = pil_img.resize(size, resample) pil_img = pil_img.resize(size, resample)
return np.asarray(pil_img) return np.asarray(pil_img)
...@@ -60,7 +69,7 @@ class UnifiedResize(object): ...@@ -60,7 +69,7 @@ class UnifiedResize(object):
# compatible with opencv < version 4.4.0 # compatible with opencv < version 4.4.0
elif interpolation is None: elif interpolation is None:
interpolation = cv2.INTER_LINEAR interpolation = cv2.INTER_LINEAR
self.resize_func = partial(cv2.resize, interpolation=interpolation) self.resize_func = partial(_cv2_resize, resample=interpolation)
elif backend.lower() == "pil": elif backend.lower() == "pil":
if isinstance(interpolation, str): if isinstance(interpolation, str):
interpolation = _pil_interp_from_str[interpolation.lower()] interpolation = _pil_interp_from_str[interpolation.lower()]
......
...@@ -224,7 +224,7 @@ class Engine(object): ...@@ -224,7 +224,7 @@ class Engine(object):
# build optimizer # build optimizer
if self.mode == 'train': if self.mode == 'train':
self.optimizer, self.lr_sch = build_optimizer( self.optimizer, self.lr_sch = build_optimizer(
self.config, self.config["Global"]["epochs"], self.config["Optimizer"], self.config["Global"]["epochs"],
len(self.train_dataloader), len(self.train_dataloader),
[self.model, self.train_loss_func]) [self.model, self.train_loss_func])
......
...@@ -53,13 +53,20 @@ def classification_eval(engine, epoch_id=0): ...@@ -53,13 +53,20 @@ def classification_eval(engine, epoch_id=0):
] ]
time_info["reader_cost"].update(time.time() - tic) time_info["reader_cost"].update(time.time() - tic)
batch_size = batch[0].shape[0] batch_size = batch[0].shape[0]
batch[0] = paddle.to_tensor(batch[0]).astype("float32") batch[0] = paddle.to_tensor(batch[0])
if not engine.config["Global"].get("use_multilabel", False): if not engine.config["Global"].get("use_multilabel", False):
batch[1] = batch[1].reshape([-1, 1]).astype("int64") batch[1] = batch[1].reshape([-1, 1]).astype("int64")
# image input # image input
if engine.amp and engine.config["AMP"].get("use_fp16_test", False): if engine.amp and (
engine.config['AMP'].get("level", "O1").upper() == "O2" or
engine.config["AMP"].get("use_fp16_test", False)):
amp_level = engine.config['AMP'].get("level", "O1").upper() amp_level = engine.config['AMP'].get("level", "O1").upper()
if amp_level == "O2":
msg = "Only support FP16 evaluation when AMP O2 is enabled."
logger.warning(msg)
with paddle.amp.auto_cast( with paddle.amp.auto_cast(
custom_black_list={ custom_black_list={
"flatten_contiguous_range", "greater_than" "flatten_contiguous_range", "greater_than"
......
...@@ -162,12 +162,21 @@ def main(args): ...@@ -162,12 +162,21 @@ def main(args):
init_model(global_config, train_prog, exe) init_model(global_config, train_prog, exe)
if 'AMP' in config: if 'AMP' in config:
if config["AMP"].get("level", "O1").upper() == "O2":
use_fp16_test = True
msg = "Only support FP16 evaluation when AMP O2 is enabled."
logger.warning(msg)
elif "use_fp16_test" in config["AMP"]:
use_fp16_test = config["AMP"].get["use_fp16_test"]
else:
use_fp16_test = False
optimizer.amp_init( optimizer.amp_init(
device, device,
scope=paddle.static.global_scope(), scope=paddle.static.global_scope(),
test_program=eval_prog test_program=eval_prog
if global_config["eval_during_train"] else None, if global_config["eval_during_train"] else None,
use_fp16_test=config["AMP"].get("use_fp16_test", False)) use_fp16_test=use_fp16_test)
if not global_config.get("is_distributed", True): if not global_config.get("is_distributed", True):
compiled_train_prog = program.compile( compiled_train_prog = program.compile(
......
===========================train_params===========================
model_name:VAN_tiny
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/VAN/VAN_tiny.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/VAN/VAN_tiny.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/VAN/VAN_tiny.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=248 -o PreProcess.transform_ops.2.NormalizeImage.mean=[0.5,0.5,0.5] -o PreProcess.transform_ops.2.NormalizeImage.std=[0.5,0.5,0.5]
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册