Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
f2982e5e
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f2982e5e
编写于
4月 22, 2022
作者:
H
HydrogenSulfate
浏览文件
操作
浏览文件
下载
差异文件
update code
上级
17fd1bc2
0146af28
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
570 addition
and
11 deletion
+570
-11
ppcls/arch/backbone/__init__.py
ppcls/arch/backbone/__init__.py
+1
-0
ppcls/arch/backbone/model_zoo/van.py
ppcls/arch/backbone/model_zoo/van.py
+317
-0
ppcls/configs/ImageNet/SENet/SE_ResNeXt101_32x4d_amp_O2_ultra.yaml
...figs/ImageNet/SENet/SE_ResNeXt101_32x4d_amp_O2_ultra.yaml
+4
-4
ppcls/configs/ImageNet/VAN/VAN_tiny.yaml
ppcls/configs/ImageNet/VAN/VAN_tiny.yaml
+158
-0
ppcls/data/preprocess/ops/operators.py
ppcls/data/preprocess/ops/operators.py
+12
-3
ppcls/engine/engine.py
ppcls/engine/engine.py
+1
-1
ppcls/engine/evaluation/classification.py
ppcls/engine/evaluation/classification.py
+9
-2
ppcls/static/train.py
ppcls/static/train.py
+10
-1
test_tipc/config/VAN/VAN_tiny.txt
test_tipc/config/VAN/VAN_tiny.txt
+58
-0
未找到文件。
ppcls/arch/backbone/__init__.py
浏览文件 @
f2982e5e
...
...
@@ -64,6 +64,7 @@ from ppcls.arch.backbone.model_zoo.cspnet import CSPDarkNet53
from
ppcls.arch.backbone.model_zoo.pvt_v2
import
PVT_V2_B0
,
PVT_V2_B1
,
PVT_V2_B2_Linear
,
PVT_V2_B2
,
PVT_V2_B3
,
PVT_V2_B4
,
PVT_V2_B5
from
ppcls.arch.backbone.model_zoo.mobilevit
import
MobileViT_XXS
,
MobileViT_XS
,
MobileViT_S
from
ppcls.arch.backbone.model_zoo.repvgg
import
RepVGG_A0
,
RepVGG_A1
,
RepVGG_A2
,
RepVGG_B0
,
RepVGG_B1
,
RepVGG_B2
,
RepVGG_B1g2
,
RepVGG_B1g4
,
RepVGG_B2g4
,
RepVGG_B3g4
from
ppcls.arch.backbone.model_zoo.van
import
VAN_tiny
from
ppcls.arch.backbone.variant_models.resnet_variant
import
ResNet50_last_stage_stride1
from
ppcls.arch.backbone.variant_models.vgg_variant
import
VGG19Sigmoid
from
ppcls.arch.backbone.variant_models.pp_lcnet_variant
import
PPLCNet_x2_5_Tanh
...
...
ppcls/arch/backbone/model_zoo/van.py
0 → 100644
浏览文件 @
f2982e5e
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was heavily based on https://github.com/Visual-Attention-Network/VAN-Classification
from
functools
import
partial
import
math
import
paddle
import
paddle.nn
as
nn
from
paddle.nn.initializer
import
TruncatedNormal
,
Constant
from
ppcls.utils.save_load
import
load_dygraph_pretrain
,
load_dygraph_pretrain_from_url
MODEL_URLS
=
{
"VAN_tiny"
:
""
,
# TODO
}
__all__
=
list
(
MODEL_URLS
.
keys
())
trunc_normal_
=
TruncatedNormal
(
std
=
.
02
)
zeros_
=
Constant
(
value
=
0.
)
ones_
=
Constant
(
value
=
1.
)
def
drop_path
(
x
,
drop_prob
=
0.
,
training
=
False
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if
drop_prob
==
0.
or
not
training
:
return
x
keep_prob
=
paddle
.
to_tensor
(
1
-
drop_prob
)
shape
=
(
paddle
.
shape
(
x
)[
0
],
)
+
(
1
,
)
*
(
x
.
ndim
-
1
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
,
dtype
=
x
.
dtype
)
random_tensor
=
paddle
.
floor
(
random_tensor
)
# binarize
output
=
x
.
divide
(
keep_prob
)
*
random_tensor
return
output
class
DropPath
(
nn
.
Layer
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def
__init__
(
self
,
drop_prob
=
None
):
super
(
DropPath
,
self
).
__init__
()
self
.
drop_prob
=
drop_prob
def
forward
(
self
,
x
):
return
drop_path
(
x
,
self
.
drop_prob
,
self
.
training
)
@
paddle
.
jit
.
not_to_static
def
swapdim
(
x
,
dim1
,
dim2
):
a
=
list
(
range
(
len
(
x
.
shape
)))
a
[
dim1
],
a
[
dim2
]
=
a
[
dim2
],
a
[
dim1
]
return
x
.
transpose
(
a
)
class
Mlp
(
nn
.
Layer
):
def
__init__
(
self
,
in_features
,
hidden_features
=
None
,
out_features
=
None
,
act_layer
=
nn
.
GELU
,
drop
=
0.
):
super
().
__init__
()
out_features
=
out_features
or
in_features
hidden_features
=
hidden_features
or
in_features
self
.
fc1
=
nn
.
Conv2D
(
in_features
,
hidden_features
,
1
)
self
.
dwconv
=
DWConv
(
hidden_features
)
self
.
act
=
act_layer
()
self
.
fc2
=
nn
.
Conv2D
(
hidden_features
,
out_features
,
1
)
self
.
drop
=
nn
.
Dropout
(
drop
)
def
forward
(
self
,
x
):
x
=
self
.
fc1
(
x
)
x
=
self
.
dwconv
(
x
)
x
=
self
.
act
(
x
)
x
=
self
.
drop
(
x
)
x
=
self
.
fc2
(
x
)
x
=
self
.
drop
(
x
)
return
x
class
LKA
(
nn
.
Layer
):
def
__init__
(
self
,
dim
):
super
().
__init__
()
self
.
conv0
=
nn
.
Conv2D
(
dim
,
dim
,
5
,
padding
=
2
,
groups
=
dim
)
self
.
conv_spatial
=
nn
.
Conv2D
(
dim
,
dim
,
7
,
stride
=
1
,
padding
=
9
,
groups
=
dim
,
dilation
=
3
)
self
.
conv1
=
nn
.
Conv2D
(
dim
,
dim
,
1
)
def
forward
(
self
,
x
):
attn
=
self
.
conv0
(
x
)
attn
=
self
.
conv_spatial
(
attn
)
attn
=
self
.
conv1
(
attn
)
return
x
*
attn
class
Attention
(
nn
.
Layer
):
def
__init__
(
self
,
d_model
):
super
().
__init__
()
self
.
proj_1
=
nn
.
Conv2D
(
d_model
,
d_model
,
1
)
self
.
activation
=
nn
.
GELU
()
self
.
spatial_gating_unit
=
LKA
(
d_model
)
self
.
proj_2
=
nn
.
Conv2D
(
d_model
,
d_model
,
1
)
def
forward
(
self
,
x
):
shorcut
=
x
x
=
self
.
proj_1
(
x
)
x
=
self
.
activation
(
x
)
x
=
self
.
spatial_gating_unit
(
x
)
x
=
self
.
proj_2
(
x
)
x
=
x
+
shorcut
return
x
class
Block
(
nn
.
Layer
):
def
__init__
(
self
,
dim
,
mlp_ratio
=
4.
,
drop
=
0.
,
drop_path
=
0.
,
act_layer
=
nn
.
GELU
):
super
().
__init__
()
self
.
norm1
=
nn
.
BatchNorm2D
(
dim
)
self
.
attn
=
Attention
(
dim
)
self
.
drop_path
=
DropPath
(
drop_path
)
if
drop_path
>
0.
else
nn
.
Identity
()
self
.
norm2
=
nn
.
BatchNorm2D
(
dim
)
mlp_hidden_dim
=
int
(
dim
*
mlp_ratio
)
self
.
mlp
=
Mlp
(
in_features
=
dim
,
hidden_features
=
mlp_hidden_dim
,
act_layer
=
act_layer
,
drop
=
drop
)
layer_scale_init_value
=
1e-2
self
.
layer_scale_1
=
self
.
create_parameter
(
shape
=
[
dim
,
1
,
1
],
default_initializer
=
Constant
(
value
=
layer_scale_init_value
))
self
.
layer_scale_2
=
self
.
create_parameter
(
shape
=
[
dim
,
1
,
1
],
default_initializer
=
Constant
(
value
=
layer_scale_init_value
))
def
forward
(
self
,
x
):
x
=
x
+
self
.
drop_path
(
self
.
layer_scale_1
*
self
.
attn
(
self
.
norm1
(
x
)))
x
=
x
+
self
.
drop_path
(
self
.
layer_scale_2
*
self
.
mlp
(
self
.
norm2
(
x
)))
return
x
class
OverlapPatchEmbed
(
nn
.
Layer
):
""" Image to Patch Embedding
"""
def
__init__
(
self
,
img_size
=
224
,
patch_size
=
7
,
stride
=
4
,
in_chans
=
3
,
embed_dim
=
768
):
super
().
__init__
()
self
.
proj
=
nn
.
Conv2D
(
in_chans
,
embed_dim
,
kernel_size
=
patch_size
,
stride
=
stride
,
padding
=
patch_size
//
2
)
self
.
norm
=
nn
.
BatchNorm2D
(
embed_dim
)
def
forward
(
self
,
x
):
x
=
self
.
proj
(
x
)
_
,
_
,
H
,
W
=
x
.
shape
x
=
self
.
norm
(
x
)
return
x
,
H
,
W
class
VAN
(
nn
.
Layer
):
r
""" VAN
A PaddlePaddle impl of : `Visual Attention Network` -
https://arxiv.org/pdf/2202.09741.pdf
"""
def
__init__
(
self
,
img_size
=
224
,
in_chans
=
3
,
class_num
=
1000
,
embed_dims
=
[
64
,
128
,
256
,
512
],
mlp_ratios
=
[
4
,
4
,
4
,
4
],
drop_rate
=
0.
,
drop_path_rate
=
0.
,
norm_layer
=
nn
.
LayerNorm
,
depths
=
[
3
,
4
,
6
,
3
],
num_stages
=
4
,
flag
=
False
):
super
().
__init__
()
if
flag
==
False
:
self
.
class_num
=
class_num
self
.
depths
=
depths
self
.
num_stages
=
num_stages
dpr
=
[
x
for
x
in
paddle
.
linspace
(
0
,
drop_path_rate
,
sum
(
depths
))
]
# stochastic depth decay rule
cur
=
0
for
i
in
range
(
num_stages
):
patch_embed
=
OverlapPatchEmbed
(
img_size
=
img_size
if
i
==
0
else
img_size
//
(
2
**
(
i
+
1
)),
patch_size
=
7
if
i
==
0
else
3
,
stride
=
4
if
i
==
0
else
2
,
in_chans
=
in_chans
if
i
==
0
else
embed_dims
[
i
-
1
],
embed_dim
=
embed_dims
[
i
])
block
=
nn
.
LayerList
([
Block
(
dim
=
embed_dims
[
i
],
mlp_ratio
=
mlp_ratios
[
i
],
drop
=
drop_rate
,
drop_path
=
dpr
[
cur
+
j
])
for
j
in
range
(
depths
[
i
])
])
norm
=
norm_layer
(
embed_dims
[
i
])
cur
+=
depths
[
i
]
setattr
(
self
,
f
"patch_embed
{
i
+
1
}
"
,
patch_embed
)
setattr
(
self
,
f
"block
{
i
+
1
}
"
,
block
)
setattr
(
self
,
f
"norm
{
i
+
1
}
"
,
norm
)
# classification head
self
.
head
=
nn
.
Linear
(
embed_dims
[
3
],
class_num
)
if
class_num
>
0
else
nn
.
Identity
()
self
.
apply
(
self
.
_init_weights
)
def
_init_weights
(
self
,
m
):
if
isinstance
(
m
,
nn
.
Linear
):
trunc_normal_
(
m
.
weight
)
if
isinstance
(
m
,
nn
.
Linear
)
and
m
.
bias
is
not
None
:
zeros_
(
m
.
bias
)
elif
isinstance
(
m
,
nn
.
LayerNorm
):
zeros_
(
m
.
bias
)
ones_
(
m
.
weight
)
elif
isinstance
(
m
,
nn
.
Conv2D
):
fan_out
=
m
.
_kernel_size
[
0
]
*
m
.
_kernel_size
[
1
]
*
m
.
_out_channels
fan_out
//=
m
.
_groups
m
.
weight
.
set_value
(
paddle
.
normal
(
std
=
math
.
sqrt
(
2.0
/
fan_out
),
shape
=
m
.
weight
.
shape
))
if
m
.
bias
is
not
None
:
zeros_
(
m
.
bias
)
def
forward_features
(
self
,
x
):
B
=
x
.
shape
[
0
]
for
i
in
range
(
self
.
num_stages
):
patch_embed
=
getattr
(
self
,
f
"patch_embed
{
i
+
1
}
"
)
block
=
getattr
(
self
,
f
"block
{
i
+
1
}
"
)
norm
=
getattr
(
self
,
f
"norm
{
i
+
1
}
"
)
x
,
H
,
W
=
patch_embed
(
x
)
for
blk
in
block
:
x
=
blk
(
x
)
x
=
x
.
flatten
(
2
)
x
=
swapdim
(
x
,
1
,
2
)
x
=
norm
(
x
)
if
i
!=
self
.
num_stages
-
1
:
x
=
x
.
reshape
([
B
,
H
,
W
,
x
.
shape
[
2
]]).
transpose
([
0
,
3
,
1
,
2
])
return
x
.
mean
(
axis
=
1
)
def
forward
(
self
,
x
):
x
=
self
.
forward_features
(
x
)
x
=
self
.
head
(
x
)
return
x
class
DWConv
(
nn
.
Layer
):
def
__init__
(
self
,
dim
=
768
):
super
().
__init__
()
self
.
dwconv
=
nn
.
Conv2D
(
dim
,
dim
,
3
,
1
,
1
,
bias_attr
=
True
,
groups
=
dim
)
def
forward
(
self
,
x
):
x
=
self
.
dwconv
(
x
)
return
x
def
_load_pretrained
(
pretrained
,
model
,
model_url
,
use_ssld
=
False
):
if
pretrained
is
False
:
pass
elif
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
model_url
,
use_ssld
=
use_ssld
)
elif
isinstance
(
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def
VAN_tiny
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
VAN
(
embed_dims
=
[
32
,
64
,
160
,
256
],
mlp_ratios
=
[
8
,
8
,
4
,
4
],
norm_layer
=
partial
(
nn
.
LayerNorm
,
epsilon
=
1e-6
),
depths
=
[
3
,
3
,
5
,
2
],
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"VAN_tiny"
],
use_ssld
=
use_ssld
)
return
model
ppcls/configs/ImageNet/SENet/SE_ResNeXt101_32x4d_amp_O2_ultra.yaml
浏览文件 @
f2982e5e
...
...
@@ -34,10 +34,10 @@ Loss:
# mixed precision training
AMP
:
scale_loss
:
128.0
use_dynamic_loss_scaling
:
True
# O2: pure fp16
level
:
O2
scale_loss
:
128.0
use_dynamic_loss_scaling
:
True
# O2: pure fp16
level
:
O2
Optimizer
:
name
:
Momentum
...
...
ppcls/configs/ImageNet/VAN/VAN_tiny.yaml
0 → 100644
浏览文件 @
f2982e5e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
300
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
# model architecture
Arch
:
name
:
VAN_tiny
class_num
:
1000
drop_path_rate
:
0.1
drop_rate
:
0.0
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
AdamW
beta1
:
0.9
beta2
:
0.999
epsilon
:
1e-8
weight_decay
:
0.05
one_dim_param_no_weight_decay
:
True
lr
:
name
:
Cosine
learning_rate
:
1e-3
eta_min
:
1e-6
warmup_epoch
:
5
warmup_start_lr
:
1e-6
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
224
interpolation
:
random
backend
:
pil
-
RandFlipImage
:
flip_code
:
1
-
TimmAutoAugment
:
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
random
img_size
:
224
mean
:
[
0.5
,
0.5
,
0.5
]
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.5
,
0.5
,
0.5
]
std
:
[
0.5
,
0.5
,
0.5
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.25
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
batch_transform_ops
:
-
OpSampler
:
MixupOperator
:
alpha
:
0.8
prob
:
0.5
CutmixOperator
:
alpha
:
1.0
prob
:
0.5
sampler
:
name
:
DistributedBatchSampler
batch_size
:
256
drop_last
:
True
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
248
interpolation
:
bicubic
backend
:
pil
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.5
,
0.5
,
0.5
]
std
:
[
0.5
,
0.5
,
0.5
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
256
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
248
interpolation
:
bicubic
backend
:
pil
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.5
,
0.5
,
0.5
]
std
:
[
0.5
,
0.5
,
0.5
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Eval
:
-
TopkAcc
:
topk
:
[
1
,
5
]
ppcls/data/preprocess/ops/operators.py
浏览文件 @
f2982e5e
...
...
@@ -38,7 +38,8 @@ class UnifiedResize(object):
'bilinear'
:
cv2
.
INTER_LINEAR
,
'area'
:
cv2
.
INTER_AREA
,
'bicubic'
:
cv2
.
INTER_CUBIC
,
'lanczos'
:
cv2
.
INTER_LANCZOS4
'lanczos'
:
cv2
.
INTER_LANCZOS4
,
'random'
:
(
cv2
.
INTER_LINEAR
,
cv2
.
INTER_CUBIC
)
}
_pil_interp_from_str
=
{
'nearest'
:
Image
.
NEAREST
,
...
...
@@ -46,10 +47,18 @@ class UnifiedResize(object):
'bicubic'
:
Image
.
BICUBIC
,
'box'
:
Image
.
BOX
,
'lanczos'
:
Image
.
LANCZOS
,
'hamming'
:
Image
.
HAMMING
'hamming'
:
Image
.
HAMMING
,
'random'
:
(
Image
.
BILINEAR
,
Image
.
BICUBIC
)
}
def
_cv2_resize
(
src
,
size
,
resample
):
if
isinstance
(
resample
,
tuple
):
resample
=
random
.
choice
(
resample
)
return
cv2
.
resize
(
src
,
size
,
interpolation
=
resample
)
def
_pil_resize
(
src
,
size
,
resample
):
if
isinstance
(
resample
,
tuple
):
resample
=
random
.
choice
(
resample
)
pil_img
=
Image
.
fromarray
(
src
)
pil_img
=
pil_img
.
resize
(
size
,
resample
)
return
np
.
asarray
(
pil_img
)
...
...
@@ -60,7 +69,7 @@ class UnifiedResize(object):
# compatible with opencv < version 4.4.0
elif
interpolation
is
None
:
interpolation
=
cv2
.
INTER_LINEAR
self
.
resize_func
=
partial
(
cv2
.
resize
,
interpolation
=
interpolation
)
self
.
resize_func
=
partial
(
_cv2_resize
,
resample
=
interpolation
)
elif
backend
.
lower
()
==
"pil"
:
if
isinstance
(
interpolation
,
str
):
interpolation
=
_pil_interp_from_str
[
interpolation
.
lower
()]
...
...
ppcls/engine/engine.py
浏览文件 @
f2982e5e
...
...
@@ -224,7 +224,7 @@ class Engine(object):
# build optimizer
if
self
.
mode
==
'train'
:
self
.
optimizer
,
self
.
lr_sch
=
build_optimizer
(
self
.
config
,
self
.
config
[
"Global"
][
"epochs"
],
self
.
config
[
"Optimizer"
]
,
self
.
config
[
"Global"
][
"epochs"
],
len
(
self
.
train_dataloader
),
[
self
.
model
,
self
.
train_loss_func
])
...
...
ppcls/engine/evaluation/classification.py
浏览文件 @
f2982e5e
...
...
@@ -53,13 +53,20 @@ def classification_eval(engine, epoch_id=0):
]
time_info
[
"reader_cost"
].
update
(
time
.
time
()
-
tic
)
batch_size
=
batch
[
0
].
shape
[
0
]
batch
[
0
]
=
paddle
.
to_tensor
(
batch
[
0
])
.
astype
(
"float32"
)
batch
[
0
]
=
paddle
.
to_tensor
(
batch
[
0
])
if
not
engine
.
config
[
"Global"
].
get
(
"use_multilabel"
,
False
):
batch
[
1
]
=
batch
[
1
].
reshape
([
-
1
,
1
]).
astype
(
"int64"
)
# image input
if
engine
.
amp
and
engine
.
config
[
"AMP"
].
get
(
"use_fp16_test"
,
False
):
if
engine
.
amp
and
(
engine
.
config
[
'AMP'
].
get
(
"level"
,
"O1"
).
upper
()
==
"O2"
or
engine
.
config
[
"AMP"
].
get
(
"use_fp16_test"
,
False
)):
amp_level
=
engine
.
config
[
'AMP'
].
get
(
"level"
,
"O1"
).
upper
()
if
amp_level
==
"O2"
:
msg
=
"Only support FP16 evaluation when AMP O2 is enabled."
logger
.
warning
(
msg
)
with
paddle
.
amp
.
auto_cast
(
custom_black_list
=
{
"flatten_contiguous_range"
,
"greater_than"
...
...
ppcls/static/train.py
浏览文件 @
f2982e5e
...
...
@@ -162,12 +162,21 @@ def main(args):
init_model
(
global_config
,
train_prog
,
exe
)
if
'AMP'
in
config
:
if
config
[
"AMP"
].
get
(
"level"
,
"O1"
).
upper
()
==
"O2"
:
use_fp16_test
=
True
msg
=
"Only support FP16 evaluation when AMP O2 is enabled."
logger
.
warning
(
msg
)
elif
"use_fp16_test"
in
config
[
"AMP"
]:
use_fp16_test
=
config
[
"AMP"
].
get
[
"use_fp16_test"
]
else
:
use_fp16_test
=
False
optimizer
.
amp_init
(
device
,
scope
=
paddle
.
static
.
global_scope
(),
test_program
=
eval_prog
if
global_config
[
"eval_during_train"
]
else
None
,
use_fp16_test
=
config
[
"AMP"
].
get
(
"use_fp16_test"
,
False
)
)
use_fp16_test
=
use_fp16_test
)
if
not
global_config
.
get
(
"is_distributed"
,
True
):
compiled_train_prog
=
program
.
compile
(
...
...
test_tipc/config/VAN/VAN_tiny.txt
0 → 100644
浏览文件 @
f2982e5e
===========================train_params===========================
model_name:VAN_tiny
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/VAN/VAN_tiny.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/VAN/VAN_tiny.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/VAN/VAN_tiny.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=248 -o PreProcess.transform_ops.2.NormalizeImage.mean=[0.5,0.5,0.5] -o PreProcess.transform_ops.2.NormalizeImage.std=[0.5,0.5,0.5]
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录