diff --git a/ppcls/arch/backbone/model_zoo/peleenet.py b/ppcls/arch/backbone/model_zoo/peleenet.py index bfeb70bb5bd145193f18b10543d957169f8dfbd0..a09091af23d7d2a67c2f8303b4f8c119f77e8593 100644 --- a/ppcls/arch/backbone/model_zoo/peleenet.py +++ b/ppcls/arch/backbone/model_zoo/peleenet.py @@ -1,6 +1,6 @@ -# MIT License +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # -# Copyright (c) Meta Platforms, Inc. and affiliates. +# MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal @@ -55,16 +55,16 @@ class _DenseLayer(nn.Layer): inter_channel = int(num_input_features / 8) * 4 print('adjust inter_channel to ', inter_channel) - self.branch1a = BasicConv2d( + self.branch1a = BasicConv2D( num_input_features, inter_channel, kernel_size=1) - self.branch1b = BasicConv2d( + self.branch1b = BasicConv2D( inter_channel, growth_rate, kernel_size=3, padding=1) - self.branch2a = BasicConv2d( + self.branch2a = BasicConv2D( num_input_features, inter_channel, kernel_size=1) - self.branch2b = BasicConv2d( + self.branch2b = BasicConv2D( inter_channel, growth_rate, kernel_size=3, padding=1) - self.branch2c = BasicConv2d( + self.branch2c = BasicConv2D( growth_rate, growth_rate, kernel_size=3, padding=1) def forward(self, x): @@ -93,13 +93,13 @@ class _StemBlock(nn.Layer): num_stem_features = int(num_init_features/2) - self.stem1 = BasicConv2d( + self.stem1 = BasicConv2D( num_input_channels, num_init_features, kernel_size=3, stride=2, padding=1) - self.stem2a = BasicConv2d( + self.stem2a = BasicConv2D( num_init_features, num_stem_features, kernel_size=1, stride=1, padding=0) - self.stem2b = BasicConv2d( + self.stem2b = BasicConv2D( num_stem_features, num_init_features, kernel_size=3, stride=2, padding=1) - self.stem3 = BasicConv2d( + self.stem3 = BasicConv2D( 2*num_init_features, num_init_features, kernel_size=1, stride=1, padding=0) self.pool = nn.MaxPool2D(kernel_size=2, stride=2) @@ -116,10 +116,10 @@ class _StemBlock(nn.Layer): return out -class BasicConv2d(nn.Layer): +class BasicConv2D(nn.Layer): def __init__(self, in_channels, out_channels, activation=True, **kwargs): - super(BasicConv2d, self).__init__() + super(BasicConv2D, self).__init__() self.conv = nn.Conv2D(in_channels, out_channels, bias_attr=False, **kwargs) self.norm = nn.BatchNorm2D(out_channels) @@ -184,7 +184,7 @@ class PeleeNetDY(nn.Layer): setattr(self.features, 'denseblock%d' % (i + 1), block) num_features = num_features + num_layers * growth_rates[i] - setattr(self.features, 'transition%d' % (i + 1), BasicConv2d( + setattr(self.features, 'transition%d' % (i + 1), BasicConv2D( num_features, num_features, kernel_size=1, stride=1, padding=0)) if i != len(block_config) - 1: