提交 e7ad3909 编写于 作者: Y Yang Nie 提交者: Tingquan Gao

update configs for 8gpus

上级 deb8e987
......@@ -49,13 +49,11 @@ Optimizer:
weight_decay: 0.004
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 0.009
learning_rate: 0.009 # for total batch size 1024
eta_min: 0.0009
warmup_epoch: 16 # 20000 iterations
warmup_start_lr: 1e-6
# by_epoch: True
clip_norm: 10
# data loader for train and eval
......
......@@ -49,13 +49,11 @@ Optimizer:
weight_decay: 0.013
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 0.0075
learning_rate: 0.0075 # for total batch size 1024
eta_min: 0.00075
warmup_epoch: 16 # 20000 iterations
warmup_start_lr: 1e-6
# by_epoch: True
clip_norm: 10
# data loader for train and eval
......
......@@ -14,7 +14,6 @@ Global:
image_shape: [3, 256, 256]
save_inference_dir: ./inference
use_dali: False
update_freq: 2 # for 4 gpus
# mixed precision training
AMP:
......@@ -50,13 +49,11 @@ Optimizer:
weight_decay: 0.029
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 0.0035 # for total batch size 1024
eta_min: 0.00035
warmup_epoch: 16 # 20000 iterations
warmup_start_lr: 1e-6
# by_epoch: True
clip_norm: 10
# data loader for train and eval
......
......@@ -49,13 +49,11 @@ Optimizer:
weight_decay: 0.05
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 0.002
learning_rate: 0.002 # for total batch size 1024
eta_min: 0.0002
warmup_epoch: 16 # 20000 iterations
warmup_start_lr: 1e-6
# by_epoch: True
clip_norm: 10
# data loader for train and eval
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册