diff --git a/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x0_5.yaml b/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x0_5.yaml index b1a017e29cac7b54174d8bdce0f04de123eae5d2..32fb6b939839de845b58e442472bc8e62f6d053d 100644 --- a/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x0_5.yaml +++ b/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x0_5.yaml @@ -49,13 +49,11 @@ Optimizer: weight_decay: 0.004 one_dim_param_no_weight_decay: True lr: - # for 8 cards name: Cosine - learning_rate: 0.009 + learning_rate: 0.009 # for total batch size 1024 eta_min: 0.0009 warmup_epoch: 16 # 20000 iterations warmup_start_lr: 1e-6 - # by_epoch: True clip_norm: 10 # data loader for train and eval diff --git a/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x1_0.yaml b/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x1_0.yaml index 3dae2020508e8e1d385ba397f010dd0279168d8a..7e77a6399551c9edbc023fed7dbfc616a3db0aaf 100644 --- a/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x1_0.yaml +++ b/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x1_0.yaml @@ -49,13 +49,11 @@ Optimizer: weight_decay: 0.013 one_dim_param_no_weight_decay: True lr: - # for 8 cards name: Cosine - learning_rate: 0.0075 + learning_rate: 0.0075 # for total batch size 1024 eta_min: 0.00075 warmup_epoch: 16 # 20000 iterations warmup_start_lr: 1e-6 - # by_epoch: True clip_norm: 10 # data loader for train and eval diff --git a/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x1_5.yaml b/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x1_5.yaml index 072d1b184e916c8b3776dc5fee9069521ecb0cb9..9f1df77a7d97c400399cbcac7812b4ad69a34156 100644 --- a/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x1_5.yaml +++ b/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x1_5.yaml @@ -14,7 +14,6 @@ Global: image_shape: [3, 256, 256] save_inference_dir: ./inference use_dali: False - update_freq: 2 # for 4 gpus # mixed precision training AMP: @@ -50,13 +49,11 @@ Optimizer: weight_decay: 0.029 one_dim_param_no_weight_decay: True lr: - # for 8 cards name: Cosine learning_rate: 0.0035 # for total batch size 1024 eta_min: 0.00035 warmup_epoch: 16 # 20000 iterations warmup_start_lr: 1e-6 - # by_epoch: True clip_norm: 10 # data loader for train and eval diff --git a/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x2_0.yaml b/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x2_0.yaml index 55c008450aa95e10579dc38513f76a3e4ed9862e..851cd64e77a4ca759265124296be762a210dd952 100644 --- a/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x2_0.yaml +++ b/ppcls/configs/ImageNet/MobileViTV2/MobileViTV2_x2_0.yaml @@ -49,13 +49,11 @@ Optimizer: weight_decay: 0.05 one_dim_param_no_weight_decay: True lr: - # for 8 cards name: Cosine - learning_rate: 0.002 + learning_rate: 0.002 # for total batch size 1024 eta_min: 0.0002 warmup_epoch: 16 # 20000 iterations warmup_start_lr: 1e-6 - # by_epoch: True clip_norm: 10 # data loader for train and eval