未验证 提交 e732d40a 编写于 作者: B Bin Lu 提交者: GitHub

Update deephashloss.py

上级 9323b147
# do binarize #copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
if self.config["Global"].get("feature_binarize") == "round": #
batch_feas = paddle.round(batch_feas).astype("float32") * 2.0 - 1.0 #Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
class DSHSDLoss(nn.Layer):
"""
# DSHSD(IEEE ACCESS 2019)
# paper [Deep Supervised Hashing Based on Stable Distribution](https://ieeexplore.ieee.org/document/8648432/)
# [DSHSD] epoch:70, bit:48, dataset:cifar10-1, MAP:0.809, Best MAP: 0.809
# [DSHSD] epoch:250, bit:48, dataset:nuswide_21, MAP:0.809, Best MAP: 0.815
# [DSHSD] epoch:135, bit:48, dataset:imagenet, MAP:0.647, Best MAP: 0.647
"""
def __init__(self, n_class, bit, alpha, multi_label=False):
super(DSHSDLoss, self).__init__()
self.m = 2 * bit
self.alpha = alpha
self.multi_label = multi_label
self.n_class = n_class
self.fc = paddle.nn.Linear(bit, n_class, bias_attr=False)
def forward(self, input, label):
feature = input["features"]
feature = feature.tanh().astype("float32")
dist = paddle.sum(
paddle.square((paddle.unsqueeze(feature, 1) - paddle.unsqueeze(feature, 0))),
axis=2)
# label to ont-hot
label = paddle.flatten(label)
label = paddle.nn.functional.one_hot(label, self.n_class).astype("float32")
s = (paddle.matmul(label, label, transpose_y=True) == 0).astype("float32")
Ld = (1 - s) / 2 * dist + s / 2 * (self.m - dist).clip(min=0)
Ld = Ld.mean()
logits = self.fc(feature)
if self.multi_label:
# multiple labels classification loss
Lc = (logits - label * logits + ((1 + (-logits).exp()).log())).sum(axis=1).mean()
else:
# single labels classification loss
Lc = (-paddle.nn.functional.softmax(logits).log() * label).sum(axis=1).mean()
return {"dshsdloss": Lc + Ld * self.alpha}
if self.config["Global"].get("feature_binarize") == "sign":
batch_feas = paddle.sign(batch_feas).astype("float32")
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册