diff --git a/ppcls/loss/deephashloss.py b/ppcls/loss/deephashloss.py index 8f02a3ba0be482f67978b2499af8b416d7ada064..b70936994d6682ab4f298b7833145e07618391a0 100644 --- a/ppcls/loss/deephashloss.py +++ b/ppcls/loss/deephashloss.py @@ -1,6 +1,59 @@ - # do binarize - if self.config["Global"].get("feature_binarize") == "round": - batch_feas = paddle.round(batch_feas).astype("float32") * 2.0 - 1.0 +#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. + +import paddle +import paddle.nn as nn + +class DSHSDLoss(nn.Layer): + """ + # DSHSD(IEEE ACCESS 2019) + # paper [Deep Supervised Hashing Based on Stable Distribution](https://ieeexplore.ieee.org/document/8648432/) + # [DSHSD] epoch:70, bit:48, dataset:cifar10-1, MAP:0.809, Best MAP: 0.809 + # [DSHSD] epoch:250, bit:48, dataset:nuswide_21, MAP:0.809, Best MAP: 0.815 + # [DSHSD] epoch:135, bit:48, dataset:imagenet, MAP:0.647, Best MAP: 0.647 + """ + def __init__(self, n_class, bit, alpha, multi_label=False): + super(DSHSDLoss, self).__init__() + self.m = 2 * bit + self.alpha = alpha + self.multi_label = multi_label + self.n_class = n_class + self.fc = paddle.nn.Linear(bit, n_class, bias_attr=False) + + def forward(self, input, label): + feature = input["features"] + feature = feature.tanh().astype("float32") + + dist = paddle.sum( + paddle.square((paddle.unsqueeze(feature, 1) - paddle.unsqueeze(feature, 0))), + axis=2) + + # label to ont-hot + label = paddle.flatten(label) + label = paddle.nn.functional.one_hot(label, self.n_class).astype("float32") + + s = (paddle.matmul(label, label, transpose_y=True) == 0).astype("float32") + Ld = (1 - s) / 2 * dist + s / 2 * (self.m - dist).clip(min=0) + Ld = Ld.mean() + + logits = self.fc(feature) + if self.multi_label: + # multiple labels classification loss + Lc = (logits - label * logits + ((1 + (-logits).exp()).log())).sum(axis=1).mean() + else: + # single labels classification loss + Lc = (-paddle.nn.functional.softmax(logits).log() * label).sum(axis=1).mean() + + return {"dshsdloss": Lc + Ld * self.alpha} - if self.config["Global"].get("feature_binarize") == "sign": - batch_feas = paddle.sign(batch_feas).astype("float32")