提交 dd6aad78 编写于 作者: G gaotingquan

docs: update inference deployment docs

上级 c1f02b51
# 服务器端C++预测
本教程将介绍在服务器端部署PaddleClas模型的详细步骤。
---
## 1. 准备环境
- Linux 环境,推荐使用 docker。
- Windows 环境,目前支持基于 `Visual Studio 2019 Community` 进行编译;此外,如果您希望通过生成 `sln解决方案` 的方式进行编译,可以参考该文档:[https://zhuanlan.zhihu.com/p/145446681](https://zhuanlan.zhihu.com/p/145446681)
* 该文档主要介绍基于 Linux 环境下的 PaddleClas C++ 预测流程,如果需要在 Windows 环境下使用预测库进行 C++ 预测,具体编译方法请参考 [Windows下编译教程](./docs/windows_vs2019_build.md)
### 1.1 编译opencv库
* 首先需要从 opencv 官网上下载在 Linux 环境下源码编译的包,以 3.4.7 版本为例,下载及解压缩命令如下:
```
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xvf 3.4.7.tar.gz
```
执行完成上述命令后,会在当前目录下生成 `opencv-3.4.7/` 的目录。
* 编译 opencv,首先设置 opencv 源码路径(`root_path`)以及安装路径(`install_path`),`root_path` 为下载的 opencv 源码路径,`install_path` 为 opencv 的安装路径。在本例中,源码路径即为当前目录下的 `opencv-3.4.7/`
```shell
cd ./opencv-3.4.7
export root_path=$PWD
export install_path=${root_path}/opencv3
```
* 然后在 opencv 源码路径下,按照下面的命令进行编译:
```shell
rm -rf build
mkdir build
cd build
cmake .. \
-DCMAKE_INSTALL_PREFIX=${install_path} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF \
-DWITH_IPP=OFF \
-DBUILD_IPP_IW=OFF \
-DWITH_LAPACK=OFF \
-DWITH_EIGEN=OFF \
-DCMAKE_INSTALL_LIBDIR=lib64 \
-DWITH_ZLIB=ON \
-DBUILD_ZLIB=ON \
-DWITH_JPEG=ON \
-DBUILD_JPEG=ON \
-DWITH_PNG=ON \
-DBUILD_PNG=ON \
-DWITH_TIFF=ON \
-DBUILD_TIFF=ON
make -j
make install
```
* 执行完成上述命令后,会生成 opencv 头文件和库文件,用于后面的 PaddleClas 代码编译。
以 opencv3.4.7 版本为例,最终在安装路径下的文件结构如下所示。**注意**:不同的 opencv 版本,下述的文件结构可能不同。
```
opencv3/
|-- bin
|-- include
|-- lib64
|-- share
```
### 1.2 获取 Paddle 预测库
* 有 2 种方式获取 Paddle 预测库,下面进行详细介绍。
#### 1.2.1 预测库源码编译
如果希望获取最新预测库特性,可以从 GitHub 上克隆 Paddle 最新代码,从源码编译预测库。对于不同平台的编译流程,请参考[Paddle预测库官网](https://paddleinference.paddlepaddle.org.cn/v2.1/user_guides/source_compile.html)的说明。编译示例如下:
1. 使用Git获取源代码:
```shell
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
```
2. 进入 `Paddle` 目录后,开始进行编译:
```shell
rm -rf build
mkdir build
cd build
cmake .. \
-DWITH_CONTRIB=OFF \
-DWITH_MKL=ON \
-DWITH_MKLDNN=ON \
-DWITH_TESTING=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_INFERENCE_API_TEST=OFF \
-DON_INFER=ON \
-DWITH_PYTHON=ON
make -j
make inference_lib_dist
```
关于编译参数选项可以参考 Paddle C++ 预测库官网:[编译选项表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#bianyixuanxiangbiao)
3. 编译完成之后,可以在 `./build/paddle_inference_install_dir/` 文件下看到以下文件及目录:
```
build/paddle_inference_install_dir/
|-- CMakeCache.txt
|-- paddle
|-- third_party
|-- version.txt
```
#### 1.2.2 直接下载安装
[Paddle预测库官网](https://paddleinference.paddlepaddle.org.cn/v2.1/user_guides/download_lib.html#c) 上提供了不同版本的 Paddle 预测库,包括多个操作系统平台和GPU、CPU等多个硬件平台的预编译库,可以在官网查找并选择合适的预测库版本进行下载,建议选择 `2.1.1` 版本。
**注意**:在选择预测库时,所选预测库版本需要与后续编译选项一致:
* CPU 预测库仅可用于 GPU 预测,具体又分为 `mkl``openblas`,分别对应其低层实现基于 `MKL` 数学运算库 和 `OpenBLAS` 数学运算库;
* GPU 预测库支持 GPU 预测和 CPU 预测,其 GPU 预测功能底层实现基于 CUDA、cuDNN,CPU 预测功能底层基于 `MKL` 实现。
`manylinux_cuda10.2_cudnn8.1_avx_mkl_trt7_gcc8.2``2.1.1` 版本为例,可使用下述命令下载并解压:
```shell
wget https://paddle-inference-lib.bj.bcebos.com/2.1.1-gpu-cuda10.2-cudnn8.1-mkl-gcc8.2/paddle_inference.tgz
tar -xf paddle_inference.tgz
```
上述命令会在当前目录下生成 `paddle_inference/` 目录。
## 2. 开始编译
<a name="2.1"></a>
### 2.1 编译 PaddleClas C++ 预测 demo
编译命令如下,其中 Paddle C++ 预测库、OpenCV 等依赖库的路径需要根据机器上的实际位置进行修改。
```shell
sh tools/build_demo.sh
```
具体地,`tools/build_demo.sh`中内容如下:
```shell
OpenCV_DIR=path/to/opencv
PADDLE_LIB_DIR=path/to/paddle
CUDA_LIB_DIR=path/to/cuda
CUDNN_LIB_DIR=path/to/cudnn
TENSORRT_LIB_DIR=path/to/tensorrt
CONFIG_LIB_PATH=path/to/config/library
CLS_LIB_PATH=path/to/cls/library
CMP_STATIC=ON
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DWITH_MKL=ON \
-DWITH_GPU=ON \
-DWITH_TENSORRT=OFF \
-DWITH_STATIC_LIB=OFF \
-DOpenCV_DIR=${OpenCV_DIR} \
-DPADDLE_LIB=${PADDLE_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCONFIG_LIB=${CONFIG_LIB_PATH} \
-DCLS_LIB=${CLS_LIB_PATH} \
-DCMP_STATIC=OFF \
make -j
```
上述命令中,各个编译选项的具体说明如下:
* `DWITH_MKL`:是否使用 MKL 数学运算库,默认为 `ON`,注意需要与下载的预测库版本一致。如为 `OpenBLAS` 版本预测库,则需设置为 `OFF`
* `DWITH_GPU`:使用使用 GPU 预测库,默认为 `OFF`,当下载预测库版本为 GPU 预测库时,可置为 `ON`,同时请设置 `DCUDA_LIB``DCUDNN_LIB`,否则请设置为 `OFF`
* `DWITH_TENSORRT`:是否使用 TensorRT,默认为 `OFF`,当 `DWITH_GPU` 设置为 `ON` 时有效,同时请设置 `DTENSORRT_LIB`
* `DWITH_STATIC_LIB`:是否使用 Paddle 预测库中的静态链接库,默认为 `OFF`
* `DOpenCV_DIR`:OpenCV 编译库的路径,本例中为 `opencv-3.4.7/opencv3/share/OpenCV`,注意该路径下需要有 `OpenCVConfig.cmake` 文件;
* `DPADDLE_LIB`:Paddle 预测库路径,一般使用下载并解压的预编译库路径 `paddle_inference` 即可,或编译生成的预测库的路径 `build/paddle_inference_install_dir`,注意该路径下需要有 `paddle``third_party` 两个子路径;
* `DCUDA_LIB`:CUDA 库路径,当 `DWITH_GPU` 设置为 `ON` 时有效,在 docker 中通常为 `/usr/local/cuda/lib64`
* `DCUDNN_LIB`:cuDNN 库路径,当 `DWITH_GPU` 设置为 `ON` 时有效,在 docker 中通常为 `/usr/lib/x86_64-linux-gnu/`
* `DTENSORRT_LIB`:TensorRT 库路径,当 `DWITH_GPU``DUSE_TENSORRT` 均设置为 `ON` 时有效,在 dokcer 中通常为 `/usr/local/TensorRT6-cuda10.0-cudnn7/`
* `DCONFIG_LIB`:如需使用已编译好的 `config lib`,请设置为 `config lib` 的路径,否则请删除该选项;
* `DCLS_LIB`:如需使用已编译好的 `cls lib`,请设置为 `cls lib` 的路径,否则请删除该选项;
* `DCMP_STATIC`:是否将 `config lib``cls lib` 编译为静态链接库,默认为 `ON`,如需编译为动态链接库,请设置为 `OFF`
在执行上述命令,编译完成之后,会在当前路径下生成 `build` 目录,其中有可执行文件 `clas_system`。并且,如未设置 `DCONFIG_LIB``DCLS_LIB`,则会在 `.\lib\` 路径下生成 `config lib` 和 `cls lib` 两个库文件,根据 `DCMP_STATIC` 的设置,两个库文件将被编译为静态链接库(`libconfig.a`、`libcls.a`)或动态链接库(`libconfig.so`、`libcls.so`)。
### 2.2 编译 config lib 预测库与 cls lib 预测库
除了可以直接编译 demo,也同样可以仅编译 config lib 和 cls lib 预测库,只需运行如下命令:
```shell
sh tools/build_lib.sh
```
具体地,`tools/build_lib.sh`中内容如下:
```shell
OpenCV_DIR=path/to/opencv
PADDLE_LIB_DIR=path/to/paddle
BUILD_DIR=./lib/build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DOpenCV_DIR=${OpenCV_DIR} \
-DPADDLE_LIB=${PADDLE_LIB_DIR} \
-DCMP_STATIC=ON \
make
```
上述命令中,各个编译选项的具体说明如下:
* `DOpenCV_DIR`:OpenCV 编译库的路径,本例中为 `opencv-3.4.7/opencv3/share/OpenCV`,注意该路径下需要有 `OpenCVConfig.cmake` 文件;
* `DPADDLE_LIB`:Paddle 预测库路径,一般使用下载并解压的预编译库路径 `paddle_inference` 即可,或编译生成的预测库的路径 `build/paddle_inference_install_dir`,注意该路径下需要有 `paddle` 和 `third_party` 两个子路径;
* `DCMP_STATIC`:是否将 `config lib` 和 `cls lib` 编译为静态链接库(`.a`),默认为 `ON`,如需编译为动态链接库(`.so`),请设置为 `OFF`。
执行上述命令后,将在目录 `./lib/` 下生成 `config lib` 和 `cls lib` 的动态链接库(`libcls.so` 和 `libconfig.so`)或静态链接库(`libcls.a` 和 `libconfig.a`)。在[编译 PaddleClas C++ 预测 demo](#2.1)中,可以通过指定编译选项 `DCLS_LIB` 和 `DCONFIG_LIB` 指定已有链接库的路径,链接库同样也可用于二次开发。
## 3. 运行 demo
### 3.1 准备 inference model
首先需要准备 inference model,关于将模型导出为 inference model 的具体步骤,可以参考[模型导出](../../docs/zh_CN/tutorials/getting_started.md#4-使用inference模型进行模型推理)文档。假设导出的预测模型文件放在`./inference`目录下,则目录结构如下。
```
inference/
|--inference.pdmodel
|--inference.pdiparams
```
**注意**:上述文件中,`cls_infer.pdmodel` 文件存储了模型网络结构信息,`cls_infer.pdiparams` 文件存储了模型参数权重信息。在运行预测时,注意两个文件的路径需要分别设置为配置文件 `tools/config.txt` 中的字段 `cls_model_path` 和 `cls_params_path` 的值。
### 3.2 运行 demo
首先修改 `tools/config.txt` 中对应字段:
* use_gpu:是否使用GPU;
* gpu_id:使用的GPU卡号;
* gpu_mem:显存;
* cpu_math_library_num_threads:底层科学计算库所用线程的数量;
* use_mkldnn:是否使用MKLDNN加速;
* use_tensorrt: 是否使用tensorRT进行加速;
* use_fp16:是否使用半精度浮点数进行计算,该选项仅在use_tensorrt为true时有效;
* cls_model_path:预测模型结构文件路径;
* cls_params_path:预测模型参数文件路径;
* resize_short_size:预处理时图像缩放大小;
* crop_size:预处理时图像裁剪后的大小。
然后修改`tools/run.sh`:
* `./build/clas_system ./tools/config.txt ./docs/imgs/ILSVRC2012_val_00000666.JPEG`
* 上述命令中分别为:编译得到的可执行文件 `clas_system`;运行时的配置文件 `config.txt`;待预测的图像。
* 最后执行以下命令,完成对一幅图像的分类。
```shell
sh tools/run.sh
```
* 最终屏幕上会输出结果,如下图所示。
<div align="center">
<img src="./docs/imgs/cpp_infer_result.png" width="600">
</div>
其中`class id`表示置信度最高的类别对应的id,score表示图片属于该类别的概率。
# 模型导出
PaddlePaddle 支持导出 inference 模型用于部署推理场景,相比于训练调优场景,inference 模型会将网络权重与网络结构进行持久化存储,并且 PaddlePaddle 支持使用预测引擎加载 inference 模型进行预测推理。
---
## 1. 环境准备
首先请参考文档[安装PaddlePaddle](../installation/install_paddle.md)和文档[安装PaddleClas](../installation/install_paddleclas.md)配置运行环境。
## 2. 分类模型导出
进入 PaddleClas 目录下:
```shell
cd /path/to/PaddleClas
```
以 ResNet50_vd 分类模型为例,下载预训练模型:
```shell
wget -P ./cls_pretrain/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
```
上述模型是使用 ResNet50_vd 在 ImageNet 上训练的模型,使用的配置文件为 `ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml`,将该模型转为 inference 模型只需运行如下命令:
```shell
python tools/export_model.py \
-c ./ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml \
-o Global.pretrained_model=./cls_pretrain/ResNet50_vd_pretrained \
-o Global.save_inference_dir=./deploy/models/class_ResNet50_vd_ImageNet_infer
```
## 3. 识别模型导出
进入 PaddleClas 目录下:
```shell
cd /path/to/PaddleClas
```
以商品识别特征提取模型为例,下载预训练模型:
```shell
wget -P ./product_pretrain/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/product_ResNet50_vd_Aliproduct_v1.0_pretrained.pdparams
```
上述模型是 ResNet50_vd 在 AliProduct 上训练的模型,训练使用的配置文件为 `ppcls/configs/Products/ResNet50_vd_Aliproduct.yaml`,将该模型转为 inference 模型只需运行如下命令:
```shell
python3 tools/export_model.py \
-c ./ppcls/configs/Products/ResNet50_vd_Aliproduct.yaml \
-o Global.pretrained_model=./product_pretrain/product_ResNet50_vd_Aliproduct_v1.0_pretrained \
-o Global.save_inference_dir=./deploy/models/product_ResNet50_vd_aliproduct_v1.0_infer
```
注意,此处保存的 inference 模型在 embedding 特征层做了截断,即导出后模型最终的输出为 n 维 embedding 特征。
## 4. 命令参数说明
在上述模型导出命令中,所使用的配置文件需要与该模型的训练文件相同,在配置文件中有以下字段用于配置模型导出参数:
* `Global.image_shape`:用于指定模型的输入数据尺寸,该尺寸不包含 batch 维度;
* `Global.save_inference_dir`:用于指定导出的 inference 模型的保存位置;
* `Global.pretrained_model`:用于指定训练过程中保存的模型权重文件路径,该路径无需包含模型权重文件后缀名 `.pdparams`。。
上述命令将生成以下三个文件:
* `inference.pdmodel`:用于存储网络结构信息;
* `inference.pdiparams`:用于存储网络权重信息;
* `inference.pdiparams.info`:用于存储模型的参数信息,在分类模型和识别模型中可忽略。
导出的 inference 模型文件可用于预测引擎进行推理部署,根据不同的部署方式/平台,可参考:
* [Python 预测](./python_deploy.md)
* [C++ 预测](./cpp_deploy.md)(目前仅支持分类模型)
* [Python Whl 预测](./whl_deploy.md)(目前仅支持分类模型)
* [PaddleHub Serving 部署](./paddle_hub_serving_deploy.md)(目前仅支持分类模型)
* [PaddleServing 部署](./paddle_serving_deploy.md)(目前仅支持分类模型)
* [PaddleLite 部署](./paddle_lite_deploy.md)(目前仅支持分类模型)
# 基于PaddleHub Serving的服务部署
PaddleClas 支持通过 PaddleHub 快速进行服务化部署。
---
## 1. 简介
hubserving 服务部署配置服务包 `clas` 下包含 3 个必选文件,目录如下:
```
hubserving/clas/
└─ __init__.py 空文件,必选
└─ config.json 配置文件,可选,使用配置启动服务时作为参数传入
└─ module.py 主模块,必选,包含服务的完整逻辑
└─ params.py 参数文件,必选,包含模型路径、前后处理参数等参数
```
## 2. 准备环境
```shell
# 安装paddlehub,请安装2.0版本
pip3 install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
```
## 3. 下载推理模型
安装服务模块前,需要准备推理模型并放到正确路径,默认模型路径为:
* 分类推理模型结构文件:`PaddleClas/inference/inference.pdmodel`
* 分类推理模型权重文件:`PaddleClas/inference/inference.pdiparams`
**注意**
* 模型文件路径可在 `PaddleClas/deploy/hubserving/clas/params.py` 中查看和修改:
```python
"inference_model_dir": "../inference/"
```
需要注意,
* 模型文件(包括 `.pdmodel``.pdiparams`)名称必须为`inference`
* 我们也提供了大量基于ImageNet-1k数据集的预训练模型,模型列表及下载地址详见[模型库概览](../../docs/zh_CN/models/models_intro.md),也可以使用自己训练转换好的模型。
## 4. 安装服务模块
针对 Linux 环境和 Windows 环境,安装命令如下。
* 在Linux环境下,安装示例如下:
```shell
cd PaddleClas/deploy
# 安装服务模块:
hub install hubserving/clas/
```
* 在Windows环境下(文件夹的分隔符为`\`),安装示例如下:
```shell
cd PaddleClas\deploy
# 安装服务模块:
hub install hubserving\clas\
```
## 5. 启动服务
### 5.1 命令行命令启动
该方式仅支持使用 CPU 预测。启动命令:
```shell
$ hub serving start --modules Module1==Version1 \
--port XXXX \
--use_multiprocess \
--workers \
```
**参数说明**:
|参数|用途|
|-|-|
|--modules/-m| [**必选**] PaddleHub Serving预安装模型,以多个Module==Version键值对的形式列出<br>*`当不指定Version时,默认选择最新版本`*|
|--port/-p| [**可选**] 服务端口,默认为8866|
|--use_multiprocess| [**可选**] 是否启用并发方式,默认为单进程方式,推荐多核CPU机器使用此方式<br>*`Windows操作系统只支持单进程方式`*|
|--workers| [**可选**] 在并发方式下指定的并发任务数,默认为`2*cpu_count-1`,其中`cpu_count`为CPU核数|
如按默认参数启动服务:```hub serving start -m clas_system```
这样就完成了一个服务化 API 的部署,使用默认端口号 8866。
### 5.2 配置文件启动
该方式仅支持使用 CPU 或 GPU 预测。启动命令:
```hub serving start -c config.json```
其中,`config.json`格式如下:
```json
{
"modules_info": {
"clas_system": {
"init_args": {
"version": "1.0.0",
"use_gpu": true,
"enable_mkldnn": false
},
"predict_args": {
}
}
},
"port": 8866,
"use_multiprocess": false,
"workers": 2
}
```
**参数说明**:
* `init_args`中的可配参数与`module.py`中的`_initialize`函数接口一致。其中,
- 当`use_gpu`为`true`时,表示使用GPU启动服务。
- 当`enable_mkldnn`为`true`时,表示使用MKL-DNN加速。
* `predict_args`中的可配参数与`module.py`中的`predict`函数接口一致。
**注意**:
* 使用配置文件启动服务时,将使用配置文件中的参数设置,其他命令行参数将被忽略;
* 如果使用 GPU 预测(即,`use_gpu`置为`true`),则需要在启动服务之前,设置 `CUDA_VISIBLE_DEVICES` 环境变量来指定所使用的 GPU 卡号,如:`export CUDA_VISIBLE_DEVICES=0`;
* **`use_gpu` 不可与 `use_multiprocess` 同时为 `true`**;
* **`use_gpu` 与 `enable_mkldnn` 同时为 `true` 时,将忽略 `enable_mkldnn`,而使用 GPU**。
如使用 GPU 3号卡启动服务:
```shell
cd PaddleClas/deploy
export CUDA_VISIBLE_DEVICES=3
hub serving start -c hubserving/clas/config.json
```
## 6. 发送预测请求
配置好服务端后,可使用以下命令发送预测请求,获取预测结果:
```shell
cd PaddleClas/deploy
python hubserving/test_hubserving.py server_url image_path
```
**脚本参数说明**:
* **server_url**:服务地址,格式为
`http://[ip_address]:[port]/predict/[module_name]`
* **image_path**:测试图像路径,可以是单张图片路径,也可以是图像集合目录路径。
* **batch_size**:[**可选**] 以`batch_size`大小为单位进行预测,默认为`1`。
* **resize_short**:[**可选**] 预处理时,按短边调整大小,默认为`256`。
* **crop_size**:[**可选**] 预处理时,居中裁剪的大小,默认为`224`。
* **normalize**:[**可选**] 预处理时,是否进行`normalize`,默认为`True`。
* **to_chw**:[**可选**] 预处理时,是否调整为`CHW`顺序,默认为`True`。
**注意**:如果使用`Transformer`系列模型,如`DeiT_***_384`, `ViT_***_384`等,请注意模型的输入数据尺寸,需要指定`--resize_short=384 --crop_size=384`。
访问示例:
```shell
python hubserving/test_hubserving.py --server_url http://127.0.0.1:8866/predict/clas_system --image_file ./hubserving/ILSVRC2012_val_00006666.JPEG --batch_size 8
```
**返回结果格式说明**:
返回结果为列表(list),包含 top-k 个分类结果,以及对应的得分,还有此图片预测耗时,具体如下:
```
list: 返回结果
└─ list: 第一张图片结果
└─ list: 前k个分类结果,依score递减排序
└─ list: 前k个分类结果对应的score,依score递减排序
└─ float: 该图分类耗时,单位秒
```
## 7. 自定义修改服务模块
如果需要修改服务逻辑,需要进行以下操作:
1. 停止服务
```hub serving stop --port/-p XXXX```
2. 到相应的`module.py`和`params.py`等文件中根据实际需求修改代码。`module.py`修改后需要重新安装(`hub install hubserving/clas/`)并部署。在进行部署前,可通过`python hubserving/clas/module.py`测试已安装服务模块。
3. 卸载旧服务包
```hub uninstall clas_system```
4. 安装修改后的新服务包
```hub install hubserving/clas/```
5.重新启动服务
```hub serving start -m clas_system```
**注意**:
常用参数可在 [params.py](./clas/params.py) 中修改:
* 更换模型,需要修改模型文件路径参数:
```python
"inference_model_dir":
```
* 更改后处理时返回的`top-k`结果数量:
```python
'topk':
```
* 更改后处理时的lable与class id对应映射文件:
```python
'class_id_map_file':
```
为了避免不必要的延时以及能够以 batch_size 进行预测,数据预处理逻辑(包括 `resize`、`crop` 等操作)均在客户端完成,因此需要在 [test_hubserving.py](./test_hubserving.py#L35-L52) 中修改。
# PaddleLite推理部署
本教程将介绍基于[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite)在移动端部署 PaddleClas 分类模型的详细步骤。
Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。如果希望直接测试速度,可以参考[Paddle-Lite移动端benchmark测试教程](../../docs/zh_CN/extension/paddle_mobile_inference.md)
---
## 1. 准备环境
Paddle Lite 目前支持以下平台部署:
* 电脑(编译Paddle Lite)
* 安卓手机(armv7或armv8)
### 1.1 准备交叉编译环境
交叉编译环境用于编译 Paddle Lite 和 PaddleClas 的 C++ demo。
支持多种开发环境,不同开发环境的编译流程请参考对应文档。
1. [Docker](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#docker)
2. [Linux](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#linux)
3. [MAC OS](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#mac-os)
### 1.2 准备预测库
预测库有两种获取方式:
1. [建议]直接下载,预测库下载链接如下:
|平台|预测库下载链接|
|-|-|
|Android|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/Android/gcc/inference_lite_lib.android.armv7.gcc.c++_static.with_extra.with_cv.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/Android/gcc/inference_lite_lib.android.armv8.gcc.c++_static.with_extra.with_cv.tar.gz)|
|iOS|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/iOS/inference_lite_lib.ios.armv7.with_cv.with_extra.tiny_publish.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/iOS/inference_lite_lib.ios.armv8.with_cv.with_extra.tiny_publish.tar.gz)|
**注**:
1. 如果是从 Paddle-Lite [官方文档](https://paddle-lite.readthedocs.io/zh/latest/quick_start/release_lib.html#android-toolchain-gcc)下载的预测库,
注意选择 `with_extra=ON,with_cv=ON` 的下载链接。
2. 如果使用量化的模型部署在端侧,建议使用 Paddle-Lite develop 分支编译预测库。
2. 编译 Paddle-Lite 得到预测库,Paddle-Lite 的编译方式如下:
```shell
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
# 如果使用编译方式,建议使用develop分支编译预测库
git checkout develop
./lite/tools/build_android.sh --arch=armv8 --with_cv=ON --with_extra=ON
```
**注意**:编译Paddle-Lite获得预测库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8,更多编译命令介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/Compile/Android.html#id2)
直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8/`文件夹,通过编译Paddle-Lite得到的预测库位于`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
预测库的文件目录如下:
```
inference_lite_lib.android.armv8/
|-- cxx C++ 预测库和头文件
| |-- include C++ 头文件
| | |-- paddle_api.h
| | |-- paddle_image_preprocess.h
| | |-- paddle_lite_factory_helper.h
| | |-- paddle_place.h
| | |-- paddle_use_kernels.h
| | |-- paddle_use_ops.h
| | `-- paddle_use_passes.h
| `-- lib C++预测库
| |-- libpaddle_api_light_bundled.a C++静态库
| `-- libpaddle_light_api_shared.so C++动态库
|-- java Java预测库
| |-- jar
| | `-- PaddlePredictor.jar
| |-- so
| | `-- libpaddle_lite_jni.so
| `-- src
|-- demo C++和Java示例代码
| |-- cxx C++ 预测库demo
| `-- java Java 预测库demo
```
## 2. 开始运行
### 2.1 模型优化
Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括量化、子图融合、混合精度、Kernel 优选等方法,使用 Paddle-Lite 的 `opt` 工具可以自动对 inference 模型进行优化,目前支持两种优化方式,优化后的模型更轻量,模型运行速度更快。在进行模型优化前,需要先准备 `opt` 优化工具,有以下两种方式。
**注意**:如果已经准备好了 `.nb` 结尾的模型文件,可以跳过此步骤。
#### 2.1.1 [建议]pip安装paddlelite并进行转换
Python下安装 `paddlelite`,目前最高支持 `Python3.7`
**注意**`paddlelite` whl包版本必须和预测库版本对应。
```shell
pip install paddlelite==2.8
```
之后使用 `paddle_lite_opt` 工具可以进行 inference 模型的转换。`paddle_lite_opt` 的部分参数如下
|选项|说明|
|-|-|
|--model_dir|待优化的PaddlePaddle模型(非combined形式)的路径|
|--model_file|待优化的PaddlePaddle模型(combined形式)的网络结构文件路径|
|--param_file|待优化的PaddlePaddle模型(combined形式)的权重文件路径|
|--optimize_out_type|输出模型类型,目前支持两种类型:protobuf和naive_buffer,其中naive_buffer是一种更轻量级的序列化/反序列化实现。若您需要在mobile端执行模型预测,请将此选项设置为naive_buffer。默认为protobuf|
|--optimize_out|优化模型的输出路径|
|--valid_targets|指定模型可执行的backend,默认为arm。目前可支持x86、arm、opencl、npu、xpu,可以同时指定多个backend(以空格分隔),Model Optimize Tool将会自动选择最佳方式。如果需要支持华为NPU(Kirin 810/990 Soc搭载的达芬奇架构NPU),应当设置为npu, arm|
|--record_tailoring_info|当使用 根据模型裁剪库文件 功能时,则设置该选项为true,以记录优化后模型含有的kernel和OP信息,默认为false|
`--model_file` 表示 inference 模型的 model 文件地址,`--param_file` 表示 inference 模型的 param 文件地址;`optimize_out` 用于指定输出文件的名称(不需要添加 `.nb` 的后缀)。直接在命令行中运行 `paddle_lite_opt`,也可以查看所有参数及其说明。
#### 2.1.2 源码编译Paddle-Lite生成opt工具
模型优化需要 Paddle-Lite 的 `opt` 可执行文件,可以通过编译 Paddle-Lite 源码获得,编译步骤如下:
```shell
# 如果准备环境时已经clone了Paddle-Lite,则不用重新clone Paddle-Lite
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout develop
# 启动编译
./lite/tools/build.sh build_optimize_tool
```
编译完成后,`opt` 文件位于 `build.opt/lite/api/` 下,可通过如下方式查看 `opt` 的运行选项和使用方式:
```shell
cd build.opt/lite/api/
./opt
```
`opt` 的使用方式与参数与上面的 `paddle_lite_opt` 完全一致。
<a name="2.1.3"></a>
#### 2.1.3 转换示例
下面以PaddleClas的 `MobileNetV3_large_x1_0` 模型为例,介绍使用 `paddle_lite_opt` 完成预训练模型到inference模型,再到 Paddle-Lite 优化模型的转换。
```shell
# 进入PaddleClas根目录
cd PaddleClas_root_path
# 下载并解压inference模型
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar
tar -xf MobileNetV3_large_x1_0_infer.tar
# 将inference模型转化为Paddle-Lite优化模型
paddle_lite_opt --model_file=./MobileNetV3_large_x1_0_infer/inference.pdmodel --param_file=./MobileNetV3_large_x1_0_infer/inference.pdiparams --optimize_out=./MobileNetV3_large_x1_0
```
最终在当前文件夹下生成 `MobileNetV3_large_x1_0.nb` 的文件。
**注意**`--optimize_out` 参数为优化后模型的保存路径,无需加后缀 `.nb``--model_file` 参数为模型结构信息文件的路径,`--param_file` 参数为模型权重信息文件的路径,请注意文件名。
### 2.2 与手机联调
首先需要进行一些准备工作。
1. 准备一台 arm8 的安卓手机,如果编译的预测库和 opt 文件是 armv7,则需要 arm7 的手机,并修改 Makefile 中 `ARM_ABI = arm7`
2. 电脑上安装 ADB 工具,用于调试。 ADB安装方式如下:
* MAC电脑安装ADB:
```shell
brew cask install android-platform-tools
```
* Linux安装ADB
```shell
sudo apt update
sudo apt install -y wget adb
```
* Window安装ADB
win上安装需要去谷歌的安卓平台下载ADB软件包进行安装:[链接](https://developer.android.com/studio)
3. 手机连接电脑后,开启手机 `USB调试` 选项,选择 `文件传输` 模式,在电脑终端中输入:
```shell
adb devices
```
如果有 device 输出,则表示安装成功,如下所示:
```
List of devices attached
744be294 device
```
4. 准备优化后的模型、预测库文件、测试图像和类别映射文件。
```shell
cd PaddleClas_root_path
cd deploy/lite/
# 运行prepare.sh
# prepare.sh 会将预测库文件、测试图像和使用的字典文件放置在预测库中的demo/cxx/clas文件夹下
sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8
# 进入lite demo的工作目录
cd /{lite prediction library path}/inference_lite_lib.android.armv8/
cd demo/cxx/clas/
# 将C++预测动态库so文件复制到debug文件夹中
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
```
`prepare.sh``PaddleClas/deploy/lite/imgs/tabby_cat.jpg` 作为测试图像,将测试图像复制到 `demo/cxx/clas/debug/` 文件夹下。
`paddle_lite_opt` 工具优化后的模型文件放置到 `/{lite prediction library path}/inference_lite_lib.android.armv8/demo/cxx/clas/debug/` 文件夹下。本例中,使用 [2.1.3](#2.1.3) 生成的 `MobileNetV3_large_x1_0.nb` 模型文件。
执行完成后,clas 文件夹下将有如下文件格式:
```
demo/cxx/clas/
|-- debug/
| |--MobileNetV3_large_x1_0.nb 优化后的分类器模型文件
| |--tabby_cat.jpg 待测试图像
| |--imagenet1k_label_list.txt 类别映射文件
| |--libpaddle_light_api_shared.so C++预测库文件
| |--config.txt 分类预测超参数配置
|-- config.txt 分类预测超参数配置
|-- image_classfication.cpp 图像分类代码文件
|-- Makefile 编译文件
```
#### 注意:
* 上述文件中,`imagenet1k_label_list.txt` 是 ImageNet1k 数据集的类别映射文件,如果使用自定义的类别,需要更换该类别映射文件。
* `config.txt` 包含了分类器的超参数,如下:
```shell
clas_model_file ./MobileNetV3_large_x1_0.nb # 模型文件地址
label_path ./imagenet1k_label_list.txt # 类别映射文本文件
resize_short_size 256 # resize之后的短边边长
crop_size 224 # 裁剪后用于预测的边长
visualize 0 # 是否进行可视化,如果选择的话,会在当前文件夹下生成名为clas_result.png的图像文件。
```
5. 启动调试,上述步骤完成后就可以使用ADB将文件夹 `debug/` push 到手机上运行,步骤如下:
```shell
# 执行编译,得到可执行文件clas_system
make -j
# 将编译得到的可执行文件移动到debug文件夹中
mv clas_system ./debug/
# 将上述debug文件夹push到手机上
adb push debug /data/local/tmp/
adb shell
cd /data/local/tmp/debug
export LD_LIBRARY_PATH=/data/local/tmp/debug:$LD_LIBRARY_PATH
# clas_system可执行文件的使用方式为:
# ./clas_system 配置文件路径 测试图像路径
./clas_system ./config.txt ./tabby_cat.jpg
```
如果对代码做了修改,则需要重新编译并 push 到手机上。
运行效果如下:
<div align="center">
<img src="./imgs/lite_demo_result.png" width="600">
</div>
## FAQ
Q1:如果想更换模型怎么办,需要重新按照流程走一遍吗?
A1:如果已经走通了上述步骤,更换模型只需要替换 `.nb` 模型文件即可,同时要注意修改下配置文件中的 `.nb` 文件路径以及类别映射文件(如有必要)。
Q2:换一个图测试怎么做?
A2:替换 debug 下的测试图像为你想要测试的图像,使用 ADB 再次 push 到手机上即可。
# 模型服务化部署
## 1. 简介
[Paddle Serving](https://github.com/PaddlePaddle/Serving) 旨在帮助深度学习开发者轻松部署在线预测服务,支持一键部署工业级的服务能力、客户端和服务端之间高并发和高效通信、并支持多种编程语言开发客户端。
该部分以 HTTP 预测服务部署为例,介绍怎样在 PaddleClas 中使用 PaddleServing 部署模型服务。
## 2. Serving安装
Serving 官网推荐使用 docker 安装并部署 Serving 环境。首先需要拉取 docker 环境并创建基于 Serving 的 docker。
```shell
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:0.2.0-gpu
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:0.2.0-gpu
nvidia-docker exec -it test bash
```
进入 docker 后,需要安装 Serving 相关的 python 包。
```shell
pip install paddlepaddle-gpu
pip install paddle-serving-client
pip install paddle-serving-server-gpu
```
* 如果安装速度太慢,可以通过 `-i https://pypi.tuna.tsinghua.edu.cn/simple` 更换源,加速安装过程。
* 如果希望部署 CPU 服务,可以安装 serving-server 的 cpu 版本,安装命令如下。
```shell
pip install paddle-serving-server
```
## 3. 导出模型
使用 `tools/export_serving_model.py` 脚本导出 Serving 模型,以 `ResNet50_vd` 为例,使用方法如下。
```shell
python tools/export_serving_model.py -m ResNet50_vd -p ./pretrained/ResNet50_vd_pretrained/ -o serving
```
最终在 serving 文件夹下会生成 `ppcls_client_conf``ppcls_model` 两个文件夹,分别存储了 client 配置、模型参数与结构文件。
## 4. 服务部署与请求
* 使用下面的方式启动 Serving 服务。
```shell
python tools/serving/image_service_gpu.py serving/ppcls_model workdir 9292
```
其中 `serving/ppcls_model` 为刚才保存的 Serving 模型地址,`workdir` 为工作目录,`9292` 为服务的端口号。
* 使用下面的脚本向 Serving 服务发送识别请求,并返回结果。
```
python tools/serving/image_http_client.py 9292 ./docs/images/logo.png
```
`9292` 为发送请求的端口号,需要与服务启动时的端口号保持一致,`./docs/images/logo.png` 为待识别的图像文件。最终返回 Top1 识别结果的类别 ID 以及概率值。
* 更多的服务部署类型,如 `RPC预测服务` 等,可以参考 Serving 的 github 官网:[https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet)
# Python 预测推理
---
首先请参考文档[安装PaddlePaddle](../installation/install_paddle.md)和文档[安装PaddleClas](../installation/install_paddleclas.md)配置运行环境。
## 1. 图像分类推理
首先请参考文档[模型导出](./export_model.md)准备 inference 模型,然后进入 PaddleClas 的 `deploy` 目录下:
```shell
cd /path/to/PaddleClas/deploy
```
使用以下命令进行预测:
```shell
python python/predict_cls.py -c configs/inference_cls.yaml
```
在配置文件 `configs/inference_cls.yaml` 中有以下字段用于配置预测参数:
* `Global.infer_imgs`:待预测的图片文件路径;
* `Global.inference_model_dir`:inference 模型文件所在目录,该目录下需要有文件 `inference.pdmodel``inference.pdiparams` 两个文件;
* `Global.use_tensorrt`:是否使用 TesorRT 预测引擎,默认为 `False`
* `Global.use_gpu`:是否使用 GPU 预测,默认为 `True`
* `Global.enable_mkldnn`:是否启用 `MKL-DNN` 加速库,默认为 `False`。注意 `enable_mkldnn``use_gpu` 同时为 `True` 时,将忽略 `enable_mkldnn`,而使用 GPU 预测;
* `Global.use_fp16`:是否启用 `FP16` ,默认为 `False`
* `PreProcess`:用于数据预处理配置;
* `PostProcess`:由于后处理配置;
* `PostProcess.Topk.class_id_map_file`:数据集 label 的映射文件,默认为 `./utils/imagenet1k_label_list.txt`,该文件为 PaddleClas 所使用的 ImageNet 数据集 label 映射文件。
**注意**:
* 如果使用 VisionTransformer 系列模型,如 `DeiT_***_384`, `ViT_***_384` 等,请注意模型的输入数据尺寸,部分模型需要修改参数: `PreProcess.resize_short=384`, `PreProcess.resize=384`
* 如果你希望提升评测模型速度,使用gpu评测时,建议开启TensorRT加速预测,使用cpu评测时,建议开启MKL-DNN加速预测。
## 2. 主体检测模型推理
进入 PaddleClas 的 `deploy` 目录下:
```shell
cd /path/to/PaddleClas/deploy
```
准备 PaddleClas 提供的主体检测 inference 模型:
```shell
mkdir -p models
# 下载通用检测 inference 模型并解压
wget -P ./models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/ppyolov2_r50vd_dcn_mainbody_v1.0_infer.tar
tar -xf ./models/ppyolov2_r50vd_dcn_mainbody_v1.0_infer.tar -C ./models/
```
使用以下命令进行预测:
```shell
python python/predict_det.py -c configs/inference_det.yaml
```
在配置文件 `configs/inference_det.yaml` 中有以下字段用于配置预测参数:
* `Global.infer_imgs`:待预测的图片文件路径;
* `Global.use_gpu`: 是否使用 GPU 预测,默认为 `True`
## 3. 特征提取模型推理
下面以商品特征提取为例,介绍特征提取模型推理。首先进入 PaddleClas 的 `deploy` 目录下:
```shell
cd /path/to/PaddleClas/deploy
```
准备 PaddleClas 提供的商品特征提取 inference 模型:
```shell
mkdir -p models
# 下载商品特征提取 inference 模型并解压
wget -P ./models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/product_ResNet50_vd_aliproduct_v1.0_infer.tar
tar -xf ./models/product_ResNet50_vd_aliproduct_v1.0_infer.tar -C ./models/
```
上述预测命令可以得到一个 512 维的特征向量,直接输出在在命令行中。
## 4. 主体检测、特征提取和向量检索串联
主体检测、特征提取和向量检索的串联预测,可以参考图像识别[快速体验](../quick_start/quick_start_recognition.md)
# PaddleClas Whl 使用说明
PaddleClas 支持 Python Whl 包方式进行预测,目前 Whl 包方式仅支持图像分类,暂不支持主体检测、特征提取及向量检索。
---
## 1. 安装
* pip安装
```bash
pip3 install paddleclas==2.2.1
```
* 本地构建并安装
```bash
python3 setup.py bdist_wheel
pip3 install dist/*
```
## 2. 快速开始
* 使用`ResNet50`模型,以下图(`'docs/images/whl/demo.jpg'`)为例进行说明。
<div align="center">
<img src="../images/whl/demo.jpg" width = "400" />
</div>
* 在Python代码中使用
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs='docs/images/whl/demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
```
**注意**`PaddleClas.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果。返回结果示例如下:
```
>>> result
[{'class_ids': [8, 7, 136, 80, 84], 'scores': [0.79368, 0.16329, 0.01853, 0.00959, 0.00239], 'label_names': ['hen', 'cock', 'European gallinule, Porphyrio porphyrio', 'black grouse', 'peacock']}]
```
* 在命令行中使用
```bash
paddleclas --model_name=ResNet50 --infer_imgs="docs/images/whl/demo.jpg"
```
```
>>> result
filename: docs/images/whl/demo.jpg, top-5, class_ids: [8, 7, 136, 80, 84], scores: [0.79368, 0.16329, 0.01853, 0.00959, 0.00239], label_names: ['hen', 'cock', 'European gallinule, Porphyrio porphyrio', 'black grouse', 'peacock']
Predict complete!
```
## 3. 参数解释
以下参数可在命令行方式使用中通过参数指定,或在Python代码中实例化PaddleClas对象时作为构造函数的参数使用。
* model_name(str): 模型名称,使用PaddleClas提供的基于ImageNet1k的预训练模型。
* inference_model_dir(str): 本地模型文件目录,当未指定 `model_name` 时该参数有效。该目录下需包含 `inference.pdmodel``inference.pdiparams` 两个模型文件。
* infer_imgs(str): 待预测图片文件路径,或包含图片文件的目录,或网络图片的URL。
* use_gpu(bool): 是否使用GPU,默认为 `True`
* gpu_mem(int): 使用的GPU显存大小,当 `use_gpu``True` 时有效,默认为8000。
* use_tensorrt(bool): 是否开启TensorRT预测,可提升GPU预测性能,需要使用带TensorRT的预测库,默认为 `False`
* enable_mkldnn(bool): 是否开启MKLDNN,当 `use_gpu``False` 时有效,默认 `False`
* cpu_num_threads(int): cpu预测时的线程数,当 `use_gpu``False``enable_mkldnn``True` 时有效,默认值为 `10`
* batch_size(int): 预测时每个batch的样本数量,默认为 `1`
* resize_short(int): 按图像较短边进行等比例缩放,默认为 `256`
* crop_size(int): 将图像裁剪到指定大小,默认为 `224`
* topk(int): 打印(返回)预测结果的前 `topk` 个类别和对应的分类概率,默认为 `5`
* class_id_map_file(str): `class id``label` 的映射关系文件。默认使用 `ImageNet1K` 数据集的映射关系。
* save_dir(str): 将预测结果作为预标注数据保存的路径,默认为 `None`,即不保存。
**注意**: 如果使用`Transformer`系列模型,如`DeiT_***_384`, `ViT_***_384`等,请注意模型的输入数据尺寸,需要设置参数`resize_short=384`, `crop_size=384`,如下所示。
* 命令行中
```bash
from paddleclas import PaddleClas, get_default_confg
paddleclas --model_name=ViT_base_patch16_384 --infer_imgs='docs/images/whl/demo.jpg' --resize_short=384 --crop_size=384
```
* Python代码中
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ViT_base_patch16_384', resize_short=384, crop_size=384)
```
## 4. 使用示例
PaddleClas提供两种使用方式:
1. Python代码中使用;
2. 命令行中使用。
### 4.1 查看帮助信息
* CLI
```bash
paddleclas -h
```
### 4.2 使用PaddleClas提供的预训练模型进行预测
可以使用PaddleClas提供的预训练模型来预测,并通过参数`model_name`指定。此时PaddleClas会根据`model_name`自动下载指定模型,并保存在目录`~/.paddleclas/`下。
* Python
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = 'docs/images/whl/demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/whl/demo.jpg'
```
### 4.3 使用本地模型文件预测
可以使用本地的模型文件进行预测,通过参数`inference_model_dir`指定模型文件目录即可。需要注意,模型文件目录下必须包含`inference.pdmodel``inference.pdiparams`两个文件。
* Python
```python
from paddleclas import PaddleClas
clas = PaddleClas(inference_model_dir='./inference/')
infer_imgs = 'docs/images/whl/demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --inference_model_dir='./inference/' --infer_imgs='docs/images/whl/demo.jpg'
```
### 4.4 批量预测
当参数 `infer_imgs` 为包含图片文件的目录时,可以对图片进行批量预测,只需通过参数 `batch_size` 指定batch大小。
* Python
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', batch_size=2)
infer_imgs = 'docs/images/'
result=clas.predict(infer_imgs)
for r in result:
print(r)
```
* CLI
```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --batch_size 2
```
### 4.5 对网络图片进行预测
可以对网络图片进行预测,只需通过参数`infer_imgs`指定图片`url`。此时图片会下载并保存在`~/.paddleclas/images/`目录下。
* Python
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = 'https://raw.githubusercontent.com/paddlepaddle/paddleclas/release/2.2/docs/images/whl/demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --model_name='ResNet50' --infer_imgs='https://raw.githubusercontent.com/paddlepaddle/paddleclas/release/2.2/docs/images/whl/demo.jpg'
```
### 4.6 对`NumPy.ndarray`格式数据进行预测
在Python中,可以对`Numpy.ndarray`格式的图像数据进行预测,只需通过参数`infer_imgs`指定即可。注意该图像数据必须为三通道图像数据。
* python
```python
import cv2
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = cv2.imread("docs/images/whl/demo.jpg")
result=clas.predict(infer_imgs)
print(next(result))
```
### 4.7 保存预测结果
可以指定参数`pre_label_out_dir='./output_pre_label/'`,将图片按其top1预测结果保存到`pre_label_out_dir`目录下对应类别的文件夹中。
* python
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/whl/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/whl/' --save_dir='./output_pre_label/'
```
### 4.8 指定label name
可以通过参数`class_id_map_file`指定`class id``lable`的对应关系。PaddleClas默认使用ImageNet1K的label_name(`ppcls/utils/imagenet1k_label_list.txt`)。
`class_id_map_file`文件内容格式应为:
```
class_id<space>class_name<\n>
```
例如:
```
0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias
......
```
* Python
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', class_id_map_file='./ppcls/utils/imagenet1k_label_list.txt')
infer_imgs = 'docs/images/whl/demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/whl/demo.jpg' --class_id_map_file='./ppcls/utils/imagenet1k_label_list.txt'
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册