Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
dc4822a6
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dc4822a6
编写于
6月 18, 2021
作者:
C
cuicheng01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update image_classification.md
上级
a033832f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
3 addition
and
3 deletion
+3
-3
docs/zh_CN/tutorials/image_classification.md
docs/zh_CN/tutorials/image_classification.md
+3
-3
未找到文件。
docs/zh_CN/tutorials/image_classification.md
浏览文件 @
dc4822a6
...
@@ -26,15 +26,15 @@ CIFAR-10数据集由10个类的60000个彩色图像组成,图像分辨率为32
...
@@ -26,15 +26,15 @@ CIFAR-10数据集由10个类的60000个彩色图像组成,图像分辨率为32
数据的质量及数量往往可以决定一个模型的好坏。在图像分类领域,数据包括图像及标签。在大部分情形下,带有标签的数据比较匮乏,所以数量很难达到使模型饱和的程度,为了可以使模型学习更多的图像特征,图像数据在进入模型之前要经过很多图像变换或者数据增强,来保证输入图像数据的多样性,从而保证模型有更好的泛化能力。PaddleClas提供了训练ImageNet-1k的标准图像变换,也提供了8中数据增强的方法,相关代码可以
[
数据处理
](
../../../ppcls/data/preprocess
)
,配置文件可以参考
[
数据增强配置文件
](
../../../ppcls/configs/ImageNet/DataAugment
)
。
数据的质量及数量往往可以决定一个模型的好坏。在图像分类领域,数据包括图像及标签。在大部分情形下,带有标签的数据比较匮乏,所以数量很难达到使模型饱和的程度,为了可以使模型学习更多的图像特征,图像数据在进入模型之前要经过很多图像变换或者数据增强,来保证输入图像数据的多样性,从而保证模型有更好的泛化能力。PaddleClas提供了训练ImageNet-1k的标准图像变换,也提供了8中数据增强的方法,相关代码可以
[
数据处理
](
../../../ppcls/data/preprocess
)
,配置文件可以参考
[
数据增强配置文件
](
../../../ppcls/configs/ImageNet/DataAugment
)
。
### 2.2 模型
### 2.2 模型
准备
在数据确定后,模型往往决定了最终算法精度的上限,在图像分类领域,经典的模型层出不穷,PaddleClas提供了35个系列共164个ImageNet预训练模型。具体的精度、速度等指标请参考
[
骨干网络和预训练模型库
](
../ImageNet_models_cn.md
)
。
在数据确定后,模型往往决定了最终算法精度的上限,在图像分类领域,经典的模型层出不穷,PaddleClas提供了35个系列共164个ImageNet预训练模型。具体的精度、速度等指标请参考
[
骨干网络和预训练模型库
](
../ImageNet_models_cn.md
)
。
### 2.3 训练
### 2.3
模型
训练
在准备好数据、模型后,便可以开始迭代模型并更新模型的参数。经过多次迭代最终可以得到训练好的模型来做图像分类任务。图像分类的训练过程需要很多经验,涉及很多超参数的设置,PaddleClas提供了一些列的
[
训练调优方法
](
../models/Tricks.md
)
,可以快速助你获得高精度的模型。
在准备好数据、模型后,便可以开始迭代模型并更新模型的参数。经过多次迭代最终可以得到训练好的模型来做图像分类任务。图像分类的训练过程需要很多经验,涉及很多超参数的设置,PaddleClas提供了一些列的
[
训练调优方法
](
../models/Tricks.md
)
,可以快速助你获得高精度的模型。
### 2.4 评估
### 2.4
模型
评估
当训练得到一个模型之后,如何确定模型的好坏,需要将模型在验证集上进行评估。评估指标一般是Top1-Acc或者Top5-Acc,该指标越高往往代表模型性能越好。
当训练得到一个模型之后,如何确定模型的好坏,需要将模型在验证集上进行评估。评估指标一般是Top1-Acc或者Top5-Acc,该指标越高往往代表模型性能越好。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录