diff --git a/docs/zh_CN/tutorials/image_classification.md b/docs/zh_CN/tutorials/image_classification.md index c4196ee0b019f8669b292896373ae87f2cd4e2d6..631e9926c923d784cb21411cc247499144f71ef1 100644 --- a/docs/zh_CN/tutorials/image_classification.md +++ b/docs/zh_CN/tutorials/image_classification.md @@ -26,15 +26,15 @@ CIFAR-10数据集由10个类的60000个彩色图像组成,图像分辨率为32 数据的质量及数量往往可以决定一个模型的好坏。在图像分类领域,数据包括图像及标签。在大部分情形下,带有标签的数据比较匮乏,所以数量很难达到使模型饱和的程度,为了可以使模型学习更多的图像特征,图像数据在进入模型之前要经过很多图像变换或者数据增强,来保证输入图像数据的多样性,从而保证模型有更好的泛化能力。PaddleClas提供了训练ImageNet-1k的标准图像变换,也提供了8中数据增强的方法,相关代码可以[数据处理](../../../ppcls/data/preprocess),配置文件可以参考[数据增强配置文件](../../../ppcls/configs/ImageNet/DataAugment)。 -### 2.2 模型 +### 2.2 模型准备 在数据确定后,模型往往决定了最终算法精度的上限,在图像分类领域,经典的模型层出不穷,PaddleClas提供了35个系列共164个ImageNet预训练模型。具体的精度、速度等指标请参考[骨干网络和预训练模型库](../ImageNet_models_cn.md)。 -### 2.3 训练 +### 2.3 模型训练 在准备好数据、模型后,便可以开始迭代模型并更新模型的参数。经过多次迭代最终可以得到训练好的模型来做图像分类任务。图像分类的训练过程需要很多经验,涉及很多超参数的设置,PaddleClas提供了一些列的[训练调优方法](../models/Tricks.md),可以快速助你获得高精度的模型。 -### 2.4 评估 +### 2.4 模型评估 当训练得到一个模型之后,如何确定模型的好坏,需要将模型在验证集上进行评估。评估指标一般是Top1-Acc或者Top5-Acc,该指标越高往往代表模型性能越好。