Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
a870f942
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a870f942
编写于
2月 06, 2021
作者:
L
littletomatodonkey
提交者:
GitHub
2月 06, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update vision_transformer.py
上级
fb7c750c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
165 addition
and
53 deletion
+165
-53
ppcls/modeling/architectures/vision_transformer.py
ppcls/modeling/architectures/vision_transformer.py
+165
-53
未找到文件。
ppcls/modeling/architectures/vision_transformer.py
浏览文件 @
a870f942
...
@@ -12,20 +12,18 @@
...
@@ -12,20 +12,18 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
numpy
as
np
import
paddle
import
paddle
import
paddle.nn
as
nn
import
paddle.nn
as
nn
from
paddle.nn.initializer
import
TruncatedNormal
,
Constant
from
paddle.nn.initializer
import
TruncatedNormal
,
Constant
__all__
=
[
__all__
=
[
"VisionTransformer"
,
"VisionTransformer"
,
"ViT_small_patch16_224"
,
"ViT_base_patch16_224"
,
"ViT_small_patch16_224"
,
"ViT_base_patch16_384"
,
"ViT_base_patch32_384"
,
"ViT_large_patch16_224"
,
"ViT_base_patch16_224"
,
"ViT_base_patch16_384"
,
"ViT_base_patch32_384"
,
"ViT_large_patch16_384"
,
"ViT_large_patch32_384"
,
"ViT_huge_patch16_224"
,
"ViT_large_patch16_224"
,
"ViT_large_patch16_384"
,
"ViT_large_patch32_384"
,
"ViT_huge_patch32_384"
"ViT_huge_patch16_224"
,
"ViT_huge_patch32_384"
]
]
trunc_normal_
=
TruncatedNormal
(
std
=
.
02
)
trunc_normal_
=
TruncatedNormal
(
std
=
.
02
)
zeros_
=
Constant
(
value
=
0.
)
zeros_
=
Constant
(
value
=
0.
)
ones_
=
Constant
(
value
=
1.
)
ones_
=
Constant
(
value
=
1.
)
...
@@ -43,12 +41,13 @@ def drop_path(x, drop_prob=0., training=False):
...
@@ -43,12 +41,13 @@ def drop_path(x, drop_prob=0., training=False):
if
drop_prob
==
0.
or
not
training
:
if
drop_prob
==
0.
or
not
training
:
return
x
return
x
keep_prob
=
paddle
.
to_tensor
(
1
-
drop_prob
)
keep_prob
=
paddle
.
to_tensor
(
1
-
drop_prob
)
shape
=
(
x
.
shape
[
0
],)
+
(
1
,
)
*
(
x
.
ndim
-
1
)
shape
=
(
paddle
.
shape
(
x
)[
0
],
)
+
(
1
,
)
*
(
x
.
ndim
-
1
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
,
dtype
=
x
.
dtype
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
,
dtype
=
x
.
dtype
)
random_tensor
=
paddle
.
floor
(
random_tensor
)
# binarize
random_tensor
=
paddle
.
floor
(
random_tensor
)
# binarize
output
=
x
.
divide
(
keep_prob
)
*
random_tensor
output
=
x
.
divide
(
keep_prob
)
*
random_tensor
return
output
return
output
class
DropPath
(
nn
.
Layer
):
class
DropPath
(
nn
.
Layer
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
"""
...
@@ -70,7 +69,12 @@ class Identity(nn.Layer):
...
@@ -70,7 +69,12 @@ class Identity(nn.Layer):
class
Mlp
(
nn
.
Layer
):
class
Mlp
(
nn
.
Layer
):
def
__init__
(
self
,
in_features
,
hidden_features
=
None
,
out_features
=
None
,
act_layer
=
nn
.
GELU
,
drop
=
0.
):
def
__init__
(
self
,
in_features
,
hidden_features
=
None
,
out_features
=
None
,
act_layer
=
nn
.
GELU
,
drop
=
0.
):
super
().
__init__
()
super
().
__init__
()
out_features
=
out_features
or
in_features
out_features
=
out_features
or
in_features
hidden_features
=
hidden_features
or
in_features
hidden_features
=
hidden_features
or
in_features
...
@@ -89,11 +93,17 @@ class Mlp(nn.Layer):
...
@@ -89,11 +93,17 @@ class Mlp(nn.Layer):
class
Attention
(
nn
.
Layer
):
class
Attention
(
nn
.
Layer
):
def
__init__
(
self
,
dim
,
num_heads
=
8
,
qkv_bias
=
False
,
qk_scale
=
None
,
attn_drop
=
0.
,
proj_drop
=
0.
):
def
__init__
(
self
,
dim
,
num_heads
=
8
,
qkv_bias
=
False
,
qk_scale
=
None
,
attn_drop
=
0.
,
proj_drop
=
0.
):
super
().
__init__
()
super
().
__init__
()
self
.
num_heads
=
num_heads
self
.
num_heads
=
num_heads
head_dim
=
dim
//
num_heads
head_dim
=
dim
//
num_heads
self
.
scale
=
qk_scale
or
head_dim
**
-
0.5
self
.
scale
=
qk_scale
or
head_dim
**
-
0.5
self
.
qkv
=
nn
.
Linear
(
dim
,
dim
*
3
,
bias_attr
=
qkv_bias
)
self
.
qkv
=
nn
.
Linear
(
dim
,
dim
*
3
,
bias_attr
=
qkv_bias
)
self
.
attn_drop
=
nn
.
Dropout
(
attn_drop
)
self
.
attn_drop
=
nn
.
Dropout
(
attn_drop
)
...
@@ -101,8 +111,9 @@ class Attention(nn.Layer):
...
@@ -101,8 +111,9 @@ class Attention(nn.Layer):
self
.
proj_drop
=
nn
.
Dropout
(
proj_drop
)
self
.
proj_drop
=
nn
.
Dropout
(
proj_drop
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
B
,
N
,
C
=
x
.
shape
# B= paddle.shape(x)[0]
qkv
=
self
.
qkv
(
x
).
reshape
((
B
,
N
,
3
,
self
.
num_heads
,
C
//
N
,
C
=
x
.
shape
[
1
:]
qkv
=
self
.
qkv
(
x
).
reshape
((
-
1
,
N
,
3
,
self
.
num_heads
,
C
//
self
.
num_heads
)).
transpose
((
2
,
0
,
3
,
1
,
4
))
self
.
num_heads
)).
transpose
((
2
,
0
,
3
,
1
,
4
))
q
,
k
,
v
=
qkv
[
0
],
qkv
[
1
],
qkv
[
2
]
q
,
k
,
v
=
qkv
[
0
],
qkv
[
1
],
qkv
[
2
]
...
@@ -110,26 +121,42 @@ class Attention(nn.Layer):
...
@@ -110,26 +121,42 @@ class Attention(nn.Layer):
attn
=
nn
.
functional
.
softmax
(
attn
,
axis
=-
1
)
attn
=
nn
.
functional
.
softmax
(
attn
,
axis
=-
1
)
attn
=
self
.
attn_drop
(
attn
)
attn
=
self
.
attn_drop
(
attn
)
x
=
(
attn
.
matmul
(
v
)).
transpose
((
0
,
2
,
1
,
3
)).
reshape
((
B
,
N
,
C
))
x
=
(
attn
.
matmul
(
v
)).
transpose
((
0
,
2
,
1
,
3
)).
reshape
((
-
1
,
N
,
C
))
x
=
self
.
proj
(
x
)
x
=
self
.
proj
(
x
)
x
=
self
.
proj_drop
(
x
)
x
=
self
.
proj_drop
(
x
)
return
x
return
x
class
Block
(
nn
.
Layer
):
class
Block
(
nn
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
dim
,
num_heads
,
mlp_ratio
=
4.
,
qkv_bias
=
False
,
qk_scale
=
None
,
drop
=
0.
,
attn_drop
=
0.
,
dim
,
drop_path
=
0.
,
act_layer
=
nn
.
GELU
,
norm_layer
=
'nn.LayerNorm'
,
epsilon
=
1e-5
):
num_heads
,
mlp_ratio
=
4.
,
qkv_bias
=
False
,
qk_scale
=
None
,
drop
=
0.
,
attn_drop
=
0.
,
drop_path
=
0.
,
act_layer
=
nn
.
GELU
,
norm_layer
=
'nn.LayerNorm'
,
epsilon
=
1e-5
):
super
().
__init__
()
super
().
__init__
()
self
.
norm1
=
eval
(
norm_layer
)(
dim
,
epsilon
=
epsilon
)
self
.
norm1
=
eval
(
norm_layer
)(
dim
,
epsilon
=
epsilon
)
self
.
attn
=
Attention
(
self
.
attn
=
Attention
(
dim
,
num_heads
=
num_heads
,
qkv_bias
=
qkv_bias
,
qk_scale
=
qk_scale
,
attn_drop
=
attn_drop
,
proj_drop
=
drop
)
dim
,
num_heads
=
num_heads
,
qkv_bias
=
qkv_bias
,
qk_scale
=
qk_scale
,
attn_drop
=
attn_drop
,
proj_drop
=
drop
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self
.
drop_path
=
DropPath
(
drop_path
)
if
drop_path
>
0.
else
Identity
()
self
.
drop_path
=
DropPath
(
drop_path
)
if
drop_path
>
0.
else
Identity
()
self
.
norm2
=
eval
(
norm_layer
)(
dim
,
epsilon
=
epsilon
)
self
.
norm2
=
eval
(
norm_layer
)(
dim
,
epsilon
=
epsilon
)
mlp_hidden_dim
=
int
(
dim
*
mlp_ratio
)
mlp_hidden_dim
=
int
(
dim
*
mlp_ratio
)
self
.
mlp
=
Mlp
(
in_features
=
dim
,
hidden_features
=
mlp_hidden_dim
,
self
.
mlp
=
Mlp
(
in_features
=
dim
,
act_layer
=
act_layer
,
drop
=
drop
)
hidden_features
=
mlp_hidden_dim
,
act_layer
=
act_layer
,
drop
=
drop
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
x
=
x
+
self
.
drop_path
(
self
.
attn
(
self
.
norm1
(
x
)))
x
=
x
+
self
.
drop_path
(
self
.
attn
(
self
.
norm1
(
x
)))
...
@@ -151,13 +178,13 @@ class PatchEmbed(nn.Layer):
...
@@ -151,13 +178,13 @@ class PatchEmbed(nn.Layer):
self
.
patch_size
=
patch_size
self
.
patch_size
=
patch_size
self
.
num_patches
=
num_patches
self
.
num_patches
=
num_patches
self
.
proj
=
nn
.
Conv2D
(
in_chans
,
embed_dim
,
self
.
proj
=
nn
.
Conv2D
(
kernel_size
=
patch_size
,
stride
=
patch_size
)
in_chans
,
embed_dim
,
kernel_size
=
patch_size
,
stride
=
patch_size
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
B
,
C
,
H
,
W
=
x
.
shape
B
,
C
,
H
,
W
=
x
.
shape
assert
H
==
self
.
img_size
[
0
]
and
W
==
self
.
img_size
[
1
],
\
assert
H
==
self
.
img_size
[
0
]
and
W
==
self
.
img_size
[
1
],
\
f
"Input image size (
{
H
}
*
{
W
}
) doesn't match model (
{
self
.
img_size
[
0
]
}
*
{
self
.
img_size
[
1
]
}
)."
"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x
=
self
.
proj
(
x
).
flatten
(
2
).
transpose
((
0
,
2
,
1
))
x
=
self
.
proj
(
x
).
flatten
(
2
).
transpose
((
0
,
2
,
1
))
return
x
return
x
...
@@ -167,16 +194,33 @@ class VisionTransformer(nn.Layer):
...
@@ -167,16 +194,33 @@ class VisionTransformer(nn.Layer):
""" Vision Transformer with support for patch input
""" Vision Transformer with support for patch input
"""
"""
def
__init__
(
self
,
img_size
=
224
,
patch_size
=
16
,
in_chans
=
3
,
class_dim
=
1000
,
embed_dim
=
768
,
depth
=
12
,
def
__init__
(
self
,
num_heads
=
12
,
mlp_ratio
=
4
,
qkv_bias
=
False
,
qk_scale
=
None
,
drop_rate
=
0.
,
attn_drop_rate
=
0.
,
img_size
=
224
,
drop_path_rate
=
0.
,
norm_layer
=
'nn.LayerNorm'
,
epsilon
=
1e-5
,
**
args
):
patch_size
=
16
,
in_chans
=
3
,
class_dim
=
1000
,
embed_dim
=
768
,
depth
=
12
,
num_heads
=
12
,
mlp_ratio
=
4
,
qkv_bias
=
False
,
qk_scale
=
None
,
drop_rate
=
0.
,
attn_drop_rate
=
0.
,
drop_path_rate
=
0.
,
norm_layer
=
'nn.LayerNorm'
,
epsilon
=
1e-5
,
**
args
):
super
().
__init__
()
super
().
__init__
()
self
.
class_dim
=
class_dim
self
.
class_dim
=
class_dim
self
.
num_features
=
self
.
embed_dim
=
embed_dim
self
.
num_features
=
self
.
embed_dim
=
embed_dim
self
.
patch_embed
=
PatchEmbed
(
self
.
patch_embed
=
PatchEmbed
(
img_size
=
img_size
,
patch_size
=
patch_size
,
in_chans
=
in_chans
,
embed_dim
=
embed_dim
)
img_size
=
img_size
,
patch_size
=
patch_size
,
in_chans
=
in_chans
,
embed_dim
=
embed_dim
)
num_patches
=
self
.
patch_embed
.
num_patches
num_patches
=
self
.
patch_embed
.
num_patches
self
.
pos_embed
=
self
.
create_parameter
(
self
.
pos_embed
=
self
.
create_parameter
(
...
@@ -187,23 +231,33 @@ class VisionTransformer(nn.Layer):
...
@@ -187,23 +231,33 @@ class VisionTransformer(nn.Layer):
self
.
add_parameter
(
"cls_token"
,
self
.
cls_token
)
self
.
add_parameter
(
"cls_token"
,
self
.
cls_token
)
self
.
pos_drop
=
nn
.
Dropout
(
p
=
drop_rate
)
self
.
pos_drop
=
nn
.
Dropout
(
p
=
drop_rate
)
dpr
=
[
x
for
x
in
paddle
.
linspace
(
0
,
drop_path_rate
,
depth
)]
dpr
=
np
.
linspace
(
0
,
drop_path_rate
,
depth
)
self
.
blocks
=
nn
.
LayerList
([
self
.
blocks
=
nn
.
LayerList
([
Block
(
Block
(
dim
=
embed_dim
,
num_heads
=
num_heads
,
mlp_ratio
=
mlp_ratio
,
qkv_bias
=
qkv_bias
,
qk_scale
=
qk_scale
,
dim
=
embed_dim
,
drop
=
drop_rate
,
attn_drop
=
attn_drop_rate
,
drop_path
=
dpr
[
i
],
norm_layer
=
norm_layer
,
epsilon
=
epsilon
)
num_heads
=
num_heads
,
for
i
in
range
(
depth
)])
mlp_ratio
=
mlp_ratio
,
qkv_bias
=
qkv_bias
,
qk_scale
=
qk_scale
,
drop
=
drop_rate
,
attn_drop
=
attn_drop_rate
,
drop_path
=
dpr
[
i
],
norm_layer
=
norm_layer
,
epsilon
=
epsilon
)
for
i
in
range
(
depth
)
])
self
.
norm
=
eval
(
norm_layer
)(
embed_dim
,
epsilon
=
epsilon
)
self
.
norm
=
eval
(
norm_layer
)(
embed_dim
,
epsilon
=
epsilon
)
# Classifier head
# Classifier head
self
.
head
=
nn
.
Linear
(
self
.
head
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
class_dim
)
if
class_dim
>
0
else
Identity
()
class_dim
)
if
class_dim
>
0
else
Identity
()
trunc_normal_
(
self
.
pos_embed
)
# TODO(littletomatodonkey): same init in static mode
trunc_normal_
(
self
.
cls_token
)
if
paddle
.
in_dynamic_mode
():
self
.
apply
(
self
.
_init_weights
)
trunc_normal_
(
self
.
pos_embed
)
trunc_normal_
(
self
.
cls_token
)
self
.
apply
(
self
.
_init_weights
)
def
_init_weights
(
self
,
m
):
def
_init_weights
(
self
,
m
):
if
isinstance
(
m
,
nn
.
Linear
):
if
isinstance
(
m
,
nn
.
Linear
):
...
@@ -215,7 +269,8 @@ class VisionTransformer(nn.Layer):
...
@@ -215,7 +269,8 @@ class VisionTransformer(nn.Layer):
ones_
(
m
.
weight
)
ones_
(
m
.
weight
)
def
forward_features
(
self
,
x
):
def
forward_features
(
self
,
x
):
B
=
x
.
shape
[
0
]
# B = x.shape[0]
B
=
paddle
.
shape
(
x
)[
0
]
x
=
self
.
patch_embed
(
x
)
x
=
self
.
patch_embed
(
x
)
cls_tokens
=
self
.
cls_token
.
expand
((
B
,
-
1
,
-
1
))
cls_tokens
=
self
.
cls_token
.
expand
((
B
,
-
1
,
-
1
))
x
=
paddle
.
concat
((
cls_tokens
,
x
),
axis
=
1
)
x
=
paddle
.
concat
((
cls_tokens
,
x
),
axis
=
1
)
...
@@ -234,59 +289,116 @@ class VisionTransformer(nn.Layer):
...
@@ -234,59 +289,116 @@ class VisionTransformer(nn.Layer):
def
ViT_small_patch16_224
(
**
kwargs
):
def
ViT_small_patch16_224
(
**
kwargs
):
model
=
VisionTransformer
(
model
=
VisionTransformer
(
patch_size
=
16
,
embed_dim
=
768
,
depth
=
8
,
num_heads
=
8
,
mlp_ratio
=
3
,
qk_scale
=
768
**-
0.5
,
**
kwargs
)
patch_size
=
16
,
embed_dim
=
768
,
depth
=
8
,
num_heads
=
8
,
mlp_ratio
=
3
,
qk_scale
=
768
**-
0.5
,
**
kwargs
)
return
model
return
model
def
ViT_base_patch16_224
(
**
kwargs
):
def
ViT_base_patch16_224
(
**
kwargs
):
model
=
VisionTransformer
(
model
=
VisionTransformer
(
patch_size
=
16
,
embed_dim
=
768
,
depth
=
12
,
num_heads
=
12
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
patch_size
=
16
,
epsilon
=
1e-6
,
**
kwargs
)
embed_dim
=
768
,
depth
=
12
,
num_heads
=
12
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
epsilon
=
1e-6
,
**
kwargs
)
return
model
return
model
def
ViT_base_patch16_384
(
**
kwargs
):
def
ViT_base_patch16_384
(
**
kwargs
):
model
=
VisionTransformer
(
model
=
VisionTransformer
(
img_size
=
384
,
patch_size
=
16
,
embed_dim
=
768
,
depth
=
12
,
num_heads
=
12
,
mlp_ratio
=
4
,
img_size
=
384
,
qkv_bias
=
True
,
epsilon
=
1e-6
,
**
kwargs
)
patch_size
=
16
,
embed_dim
=
768
,
depth
=
12
,
num_heads
=
12
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
epsilon
=
1e-6
,
**
kwargs
)
return
model
return
model
def
ViT_base_patch32_384
(
**
kwargs
):
def
ViT_base_patch32_384
(
**
kwargs
):
model
=
VisionTransformer
(
model
=
VisionTransformer
(
img_size
=
384
,
patch_size
=
32
,
embed_dim
=
768
,
depth
=
12
,
num_heads
=
12
,
mlp_ratio
=
4
,
img_size
=
384
,
qkv_bias
=
True
,
epsilon
=
1e-6
,
**
kwargs
)
patch_size
=
32
,
embed_dim
=
768
,
depth
=
12
,
num_heads
=
12
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
epsilon
=
1e-6
,
**
kwargs
)
return
model
return
model
def
ViT_large_patch16_224
(
**
kwargs
):
def
ViT_large_patch16_224
(
**
kwargs
):
model
=
VisionTransformer
(
model
=
VisionTransformer
(
patch_size
=
16
,
embed_dim
=
1024
,
depth
=
24
,
num_heads
=
16
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
patch_size
=
16
,
epsilon
=
1e-6
,
**
kwargs
)
embed_dim
=
1024
,
depth
=
24
,
num_heads
=
16
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
epsilon
=
1e-6
,
**
kwargs
)
return
model
return
model
def
ViT_large_patch16_384
(
**
kwargs
):
def
ViT_large_patch16_384
(
**
kwargs
):
model
=
VisionTransformer
(
model
=
VisionTransformer
(
img_size
=
384
,
patch_size
=
16
,
embed_dim
=
1024
,
depth
=
24
,
num_heads
=
16
,
mlp_ratio
=
4
,
img_size
=
384
,
qkv_bias
=
True
,
epsilon
=
1e-6
,
**
kwargs
)
patch_size
=
16
,
embed_dim
=
1024
,
depth
=
24
,
num_heads
=
16
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
epsilon
=
1e-6
,
**
kwargs
)
return
model
return
model
def
ViT_large_patch32_384
(
**
kwargs
):
def
ViT_large_patch32_384
(
**
kwargs
):
model
=
VisionTransformer
(
model
=
VisionTransformer
(
img_size
=
384
,
patch_size
=
32
,
embed_dim
=
1024
,
depth
=
24
,
num_heads
=
16
,
mlp_ratio
=
4
,
img_size
=
384
,
qkv_bias
=
True
,
epsilon
=
1e-6
,
**
kwargs
)
patch_size
=
32
,
embed_dim
=
1024
,
depth
=
24
,
num_heads
=
16
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
epsilon
=
1e-6
,
**
kwargs
)
return
model
return
model
def
ViT_huge_patch16_224
(
**
kwargs
):
def
ViT_huge_patch16_224
(
**
kwargs
):
model
=
VisionTransformer
(
model
=
VisionTransformer
(
patch_size
=
16
,
embed_dim
=
1280
,
depth
=
32
,
num_heads
=
16
,
mlp_ratio
=
4
,
**
kwargs
)
patch_size
=
16
,
embed_dim
=
1280
,
depth
=
32
,
num_heads
=
16
,
mlp_ratio
=
4
,
**
kwargs
)
return
model
return
model
def
ViT_huge_patch32_384
(
**
kwargs
):
def
ViT_huge_patch32_384
(
**
kwargs
):
model
=
VisionTransformer
(
model
=
VisionTransformer
(
img_size
=
384
,
patch_size
=
32
,
embed_dim
=
1280
,
depth
=
32
,
num_heads
=
16
,
mlp_ratio
=
4
,
**
kwargs
)
img_size
=
384
,
patch_size
=
32
,
embed_dim
=
1280
,
depth
=
32
,
num_heads
=
16
,
mlp_ratio
=
4
,
**
kwargs
)
return
model
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录