Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
a1fa19cd
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a1fa19cd
编写于
4月 07, 2023
作者:
G
gaotingquan
提交者:
cuicheng01
5月 17, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rename: v3 -> V3
上级
2091a59f
变更
21
隐藏空白更改
内联
并排
Showing
21 changed file
with
208 addition
and
208 deletion
+208
-208
docs/zh_CN/models/ImageNet1k/MobileViTV3.md
docs/zh_CN/models/ImageNet1k/MobileViTV3.md
+13
-13
ppcls/arch/backbone/__init__.py
ppcls/arch/backbone/__init__.py
+1
-1
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S.yaml
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S.yaml
+1
-1
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S_L2.yaml
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S_L2.yaml
+1
-1
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS.yaml
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS.yaml
+1
-1
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS_L2.yaml
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS_L2.yaml
+1
-1
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS.yaml
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS.yaml
+1
-1
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS_L2.yaml
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS_L2.yaml
+150
-0
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_5.yaml
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_5.yaml
+1
-1
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_75.yaml
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_75.yaml
+1
-1
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x1_0.yaml
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x1_0.yaml
+1
-1
ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS_L2.yaml
ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS_L2.yaml
+0
-150
test_tipc/configs/MobileViTv3/MobileViTV3_S_L2_train_infer_python.txt
...nfigs/MobileViTv3/MobileViTV3_S_L2_train_infer_python.txt
+4
-4
test_tipc/configs/MobileViTv3/MobileViTV3_S_train_infer_python.txt
.../configs/MobileViTv3/MobileViTV3_S_train_infer_python.txt
+4
-4
test_tipc/configs/MobileViTv3/MobileViTV3_XS_L2_train_infer_python.txt
...figs/MobileViTv3/MobileViTV3_XS_L2_train_infer_python.txt
+4
-4
test_tipc/configs/MobileViTv3/MobileViTV3_XS_train_infer_python.txt
...configs/MobileViTv3/MobileViTV3_XS_train_infer_python.txt
+4
-4
test_tipc/configs/MobileViTv3/MobileViTV3_XXS_L2_train_infer_python.txt
...igs/MobileViTv3/MobileViTV3_XXS_L2_train_infer_python.txt
+4
-4
test_tipc/configs/MobileViTv3/MobileViTV3_XXS_train_infer_python.txt
...onfigs/MobileViTv3/MobileViTV3_XXS_train_infer_python.txt
+4
-4
test_tipc/configs/MobileViTv3/MobileViTV3_x0_5_train_infer_python.txt
...nfigs/MobileViTv3/MobileViTV3_x0_5_train_infer_python.txt
+4
-4
test_tipc/configs/MobileViTv3/MobileViTV3_x0_75_train_infer_python.txt
...figs/MobileViTv3/MobileViTV3_x0_75_train_infer_python.txt
+4
-4
test_tipc/configs/MobileViTv3/MobileViTV3_x1_0_train_infer_python.txt
...nfigs/MobileViTv3/MobileViTV3_x1_0_train_infer_python.txt
+4
-4
未找到文件。
docs/zh_CN/models/ImageNet1k/MobileViT
v
3.md
→
docs/zh_CN/models/ImageNet1k/MobileViT
V
3.md
浏览文件 @
a1fa19cd
# MobileviT
v
3
# MobileviT
V
3
-----
## 目录
...
...
@@ -24,8 +24,8 @@
### 1.1 模型简介
MobileViT
v3 是一个结合 CNN 和 ViT 的轻量级模型,用于移动视觉任务。通过 MobileViTv3-block 解决了 MobileViTv1 的扩展问题并简化了学习任务,从而得倒了 MobileViTv3-XXS、XS 和 S 模型,在 ImageNet-1k、ADE20K、COCO 和 PascalVOC2012 数据集上表现优于 MobileViTv
1。
通过将提出的融合块添加到 MobileViT
v2 中,创建 MobileViTv3-0.5、0.75 和 1.0 模型,在ImageNet-1k、ADE20K、COCO和PascalVOC2012数据集上给出了比 MobileViTv
2 更好的准确性数据。
[
论文地址
](
https://arxiv.org/abs/2209.15159
)
。
MobileViT
V3 是一个结合 CNN 和 ViT 的轻量级模型,用于移动视觉任务。通过 MobileViTV3-block 解决了 MobileViTV1 的扩展问题并简化了学习任务,从而得倒了 MobileViTV3-XXS、XS 和 S 模型,在 ImageNet-1k、ADE20K、COCO 和 PascalVOC2012 数据集上表现优于 MobileViTV
1。
通过将提出的融合块添加到 MobileViT
V2 中,创建 MobileViTV3_x0_5、MobileViTV3_x0_75 和 MobileViTV3_x1_0 模型,在ImageNet-1k、ADE20K、COCO和PascalVOC2012数据集上给出了比 MobileViTV
2 更好的准确性数据。
[
论文地址
](
https://arxiv.org/abs/2209.15159
)
。
<a
name=
'1.2'
></a>
...
...
@@ -33,15 +33,15 @@ MobileViTv3 是一个结合 CNN 和 ViT 的轻量级模型,用于移动视觉
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPs
<br>
(G) | Params
<br>
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| MobileViT
v
3_XXS | 0.7087 | 0.8976 | 0.7098 | - | 289.02 | 1.25 |
| MobileViT
v
3_XS | 0.7663 | 0.9332 | 0.7671 | - | 926.98 | 2.49 |
| MobileViT
v
3_S | 0.7928 | 0.9454 | 0.7930 | - | 1841.39 | 5.76 |
| MobileViT
v
3_XXS_L2 | 0.7028 | 0.8942 | 0.7023 | - | 256.97 | 1.15 |
| MobileViT
v
3_XS_L2 | 0.7607 | 0.9300 | 0.7610 | - | 852.82 | 2.26 |
| MobileViT
v
3_S_L2 | 0.7907 | 0.9440 | 0.7906 | - | 1651.96 | 5.17 |
| MobileViT
v
3_x0_5 | 0.7200 | 0.9083 | 0.7233 | - | 481.33 | 1.43 |
| MobileViT
v
3_x0_75 | 0.7626 | 0.9308 | 0.7655 | - | 1064.48 | 3.00 |
| MobileViT
v
3_x1_0 | 0.7838 | 0.9421 | 0.7864 | - | 1875.96 | 5.14 |
| MobileViT
V
3_XXS | 0.7087 | 0.8976 | 0.7098 | - | 289.02 | 1.25 |
| MobileViT
V
3_XS | 0.7663 | 0.9332 | 0.7671 | - | 926.98 | 2.49 |
| MobileViT
V
3_S | 0.7928 | 0.9454 | 0.7930 | - | 1841.39 | 5.76 |
| MobileViT
V
3_XXS_L2 | 0.7028 | 0.8942 | 0.7023 | - | 256.97 | 1.15 |
| MobileViT
V
3_XS_L2 | 0.7607 | 0.9300 | 0.7610 | - | 852.82 | 2.26 |
| MobileViT
V
3_S_L2 | 0.7907 | 0.9440 | 0.7906 | - | 1651.96 | 5.17 |
| MobileViT
V
3_x0_5 | 0.7200 | 0.9083 | 0.7233 | - | 481.33 | 1.43 |
| MobileViT
V
3_x0_75 | 0.7626 | 0.9308 | 0.7655 | - | 1064.48 | 3.00 |
| MobileViT
V
3_x1_0 | 0.7838 | 0.9421 | 0.7864 | - | 1875.96 | 5.14 |
**备注:**
PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。
...
...
@@ -55,7 +55,7 @@ MobileViTv3 是一个结合 CNN 和 ViT 的轻量级模型,用于移动视觉
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在
`ppcls/configs/ImageNet/MobileViT
v
3/`
中提供了该模型的训练配置,启动训练方法可以参考:
[
ResNet50 模型训练、评估和预测
](
./ResNet.md#3-模型训练评估和预测
)
。
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在
`ppcls/configs/ImageNet/MobileViT
V
3/`
中提供了该模型的训练配置,启动训练方法可以参考:
[
ResNet50 模型训练、评估和预测
](
./ResNet.md#3-模型训练评估和预测
)
。
**备注:**
由于 MobileViT 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如
`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`
, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
...
...
ppcls/arch/backbone/__init__.py
浏览文件 @
a1fa19cd
...
...
@@ -79,8 +79,8 @@ from .model_zoo.cvt import CvT_13_224, CvT_13_384, CvT_21_224, CvT_21_384, CvT_W
from
.model_zoo.micronet
import
MicroNet_M0
,
MicroNet_M1
,
MicroNet_M2
,
MicroNet_M3
from
.model_zoo.mobilenext
import
MobileNeXt_x0_35
,
MobileNeXt_x0_5
,
MobileNeXt_x0_75
,
MobileNeXt_x1_0
,
MobileNeXt_x1_4
from
.model_zoo.mobilevit_v2
import
MobileViTV2_x0_5
,
MobileViTV2_x0_75
,
MobileViTV2_x1_0
,
MobileViTV2_x1_25
,
MobileViTV2_x1_5
,
MobileViTV2_x1_75
,
MobileViTV2_x2_0
from
.model_zoo.mobilevit_v3
import
MobileViTv3_XXS
,
MobileViTv3_XS
,
MobileViTv3_S
,
MobileViTv3_XXS_L2
,
MobileViTv3_XS_L2
,
MobileViTv3_S_L2
,
MobileViTv3_x0_5
,
MobileViTv3_x0_75
,
MobileViTv3_x1_0
from
.model_zoo.tinynet
import
TinyNet_A
,
TinyNet_B
,
TinyNet_C
,
TinyNet_D
,
TinyNet_E
from
.model_zoo.mobilevit_v3
import
MobileViTV3_XXS
,
MobileViTV3_XS
,
MobileViTV3_S
,
MobileViTV3_XXS_L2
,
MobileViTV3_XS_L2
,
MobileViTV3_S_L2
,
MobileViTV3_x0_5
,
MobileViTV3_x0_75
,
MobileViTV3_x1_0
from
.variant_models.resnet_variant
import
ResNet50_last_stage_stride1
from
.variant_models.resnet_variant
import
ResNet50_adaptive_max_pool2d
...
...
ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_S.yaml
→
ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_S.yaml
浏览文件 @
a1fa19cd
...
...
@@ -28,7 +28,7 @@ EMA:
# model architecture
Arch
:
name
:
MobileViT
v
3_S
name
:
MobileViT
V
3_S
class_num
:
1000
dropout
:
0.1
...
...
ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_S_L2.yaml
→
ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_S_L2.yaml
浏览文件 @
a1fa19cd
...
...
@@ -28,7 +28,7 @@ EMA:
# model architecture
Arch
:
name
:
MobileViT
v
3_S_L2
name
:
MobileViT
V
3_S_L2
class_num
:
1000
dropout
:
0.1
...
...
ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XS.yaml
→
ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XS.yaml
浏览文件 @
a1fa19cd
...
...
@@ -28,7 +28,7 @@ EMA:
# model architecture
Arch
:
name
:
MobileViT
v
3_XS
name
:
MobileViT
V
3_XS
class_num
:
1000
dropout
:
0.1
...
...
ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XS_L2.yaml
→
ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XS_L2.yaml
浏览文件 @
a1fa19cd
...
...
@@ -28,7 +28,7 @@ EMA:
# model architecture
Arch
:
name
:
MobileViT
v
3_XS_L2
name
:
MobileViT
V
3_XS_L2
class_num
:
1000
dropout
:
0.1
...
...
ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XXS.yaml
→
ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XXS.yaml
浏览文件 @
a1fa19cd
...
...
@@ -28,7 +28,7 @@ EMA:
# model architecture
Arch
:
name
:
MobileViT
v
3_XXS
name
:
MobileViT
V
3_XXS
class_num
:
1000
dropout
:
0.05
...
...
ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS_L2.yaml
0 → 100644
浏览文件 @
a1fa19cd
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
300
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
256
,
256
]
save_inference_dir
:
./inference
use_dali
:
False
# mixed precision training
AMP
:
scale_loss
:
65536
use_dynamic_loss_scaling
:
True
# O1: mixed fp16
level
:
O1
# model ema
EMA
:
decay
:
0.9995
# model architecture
Arch
:
name
:
MobileViTV3_XXS_L2
class_num
:
1000
dropout
:
0.1
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
AdamW
beta1
:
0.9
beta2
:
0.999
epsilon
:
1e-8
weight_decay
:
0.01
lr
:
name
:
Cosine
learning_rate
:
0.002
# for total batch size 384
eta_min
:
0.0002
warmup_epoch
:
1
# 3000 iterations
warmup_start_lr
:
0.0002
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiScaleDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
256
interpolation
:
bilinear
use_log_aspect
:
True
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.0
,
0.0
,
0.0
]
std
:
[
1.0
,
1.0
,
1.0
]
order
:
'
'
# support to specify width and height respectively:
# scales: [(256,256) (160,160), (192,192), (224,224) (288,288) (320,320)]
sampler
:
name
:
MultiScaleSampler
scales
:
[
256
,
160
,
192
,
224
,
288
,
320
]
# first_bs: batch size for the first image resolution in the scales list
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs
:
48
divided_factor
:
32
is_training
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
288
interpolation
:
bilinear
-
CropImage
:
size
:
256
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.0
,
0.0
,
0.0
]
std
:
[
1.0
,
1.0
,
1.0
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
48
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
288
interpolation
:
bilinear
-
CropImage
:
size
:
256
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.0
,
0.0
,
0.0
]
std
:
[
1.0
,
1.0
,
1.0
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
5
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
5
]
ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x0_5.yaml
→
ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x0_5.yaml
浏览文件 @
a1fa19cd
...
...
@@ -28,7 +28,7 @@ EMA:
# model architecture
Arch
:
name
:
MobileViT
v
3_x0_5
name
:
MobileViT
V
3_x0_5
class_num
:
1000
classifier_dropout
:
0.
...
...
ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x0_75.yaml
→
ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x0_75.yaml
浏览文件 @
a1fa19cd
...
...
@@ -28,7 +28,7 @@ EMA:
# model architecture
Arch
:
name
:
MobileViT
v
3_x0_75
name
:
MobileViT
V
3_x0_75
class_num
:
1000
classifier_dropout
:
0.
...
...
ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x1_0.yaml
→
ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x1_0.yaml
浏览文件 @
a1fa19cd
...
...
@@ -28,7 +28,7 @@ EMA:
# model architecture
Arch
:
name
:
MobileViT
v
3_x1_0
name
:
MobileViT
V
3_x1_0
class_num
:
1000
classifier_dropout
:
0.
...
...
ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS_L2.yaml
已删除
100644 → 0
浏览文件 @
2091a59f
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
300
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
256
,
256
]
save_inference_dir
:
./inference
use_dali
:
False
# mixed precision training
AMP
:
scale_loss
:
65536
use_dynamic_loss_scaling
:
True
# O1: mixed fp16
level
:
O1
# model ema
EMA
:
decay
:
0.9995
# model architecture
Arch
:
name
:
MobileViTv3_XXS_L2
class_num
:
1000
dropout
:
0.1
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
AdamW
beta1
:
0.9
beta2
:
0.999
epsilon
:
1e-8
weight_decay
:
0.01
lr
:
name
:
Cosine
learning_rate
:
0.002
# for total batch size 384
eta_min
:
0.0002
warmup_epoch
:
1
# 3000 iterations
warmup_start_lr
:
0.0002
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
MultiScaleDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
256
interpolation
:
bilinear
use_log_aspect
:
True
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.0
,
0.0
,
0.0
]
std
:
[
1.0
,
1.0
,
1.0
]
order
:
'
'
# support to specify width and height respectively:
# scales: [(256,256) (160,160), (192,192), (224,224) (288,288) (320,320)]
sampler
:
name
:
MultiScaleSampler
scales
:
[
256
,
160
,
192
,
224
,
288
,
320
]
# first_bs: batch size for the first image resolution in the scales list
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs
:
48
divided_factor
:
32
is_training
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
288
interpolation
:
bilinear
-
CropImage
:
size
:
256
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.0
,
0.0
,
0.0
]
std
:
[
1.0
,
1.0
,
1.0
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
48
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
288
interpolation
:
bilinear
-
CropImage
:
size
:
256
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.0
,
0.0
,
0.0
]
std
:
[
1.0
,
1.0
,
1.0
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
5
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
5
]
test_tipc/configs/MobileViTv3/MobileViT
v
3_S_L2_train_infer_python.txt
→
test_tipc/configs/MobileViTv3/MobileViT
V
3_S_L2_train_infer_python.txt
浏览文件 @
a1fa19cd
===========================train_params===========================
model_name:MobileViT
v
3_S_L2
model_name:MobileViT
V
3_S_L2
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
...
...
@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_S_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_S_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
...
...
@@ -21,13 +21,13 @@ null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_S_L2.yaml
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_S_L2.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_S_L2.yaml
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_S_L2.yaml
quant_export:null
fpgm_export:null
distill_export:null
...
...
test_tipc/configs/MobileViTv3/MobileViT
v
3_S_train_infer_python.txt
→
test_tipc/configs/MobileViTv3/MobileViT
V
3_S_train_infer_python.txt
浏览文件 @
a1fa19cd
===========================train_params===========================
model_name:MobileViT
v
3_S
model_name:MobileViT
V
3_S
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
...
...
@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_S.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_S.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
...
...
@@ -21,13 +21,13 @@ null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_S.yaml
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_S.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_S.yaml
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_S.yaml
quant_export:null
fpgm_export:null
distill_export:null
...
...
test_tipc/configs/MobileViTv3/MobileViT
v
3_XS_L2_train_infer_python.txt
→
test_tipc/configs/MobileViTv3/MobileViT
V
3_XS_L2_train_infer_python.txt
浏览文件 @
a1fa19cd
===========================train_params===========================
model_name:MobileViT
v
3_XS_L2
model_name:MobileViT
V
3_XS_L2
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
...
...
@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XS_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XS_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
...
...
@@ -21,13 +21,13 @@ null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XS_L2.yaml
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XS_L2.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XS_L2.yaml
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XS_L2.yaml
quant_export:null
fpgm_export:null
distill_export:null
...
...
test_tipc/configs/MobileViTv3/MobileViT
v
3_XS_train_infer_python.txt
→
test_tipc/configs/MobileViTv3/MobileViT
V
3_XS_train_infer_python.txt
浏览文件 @
a1fa19cd
===========================train_params===========================
model_name:MobileViT
v
3_XS
model_name:MobileViT
V
3_XS
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
...
...
@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XS.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XS.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
...
...
@@ -21,13 +21,13 @@ null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XS.yaml
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XS.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XS.yaml
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XS.yaml
quant_export:null
fpgm_export:null
distill_export:null
...
...
test_tipc/configs/MobileViTv3/MobileViT
v
3_XXS_L2_train_infer_python.txt
→
test_tipc/configs/MobileViTv3/MobileViT
V
3_XXS_L2_train_infer_python.txt
浏览文件 @
a1fa19cd
===========================train_params===========================
model_name:MobileViT
v
3_XXS_L2
model_name:MobileViT
V
3_XXS_L2
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
...
...
@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XXS_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XXS_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
...
...
@@ -21,13 +21,13 @@ null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XXS_L2.yaml
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XXS_L2.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XXS_L2.yaml
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XXS_L2.yaml
quant_export:null
fpgm_export:null
distill_export:null
...
...
test_tipc/configs/MobileViTv3/MobileViT
v
3_XXS_train_infer_python.txt
→
test_tipc/configs/MobileViTv3/MobileViT
V
3_XXS_train_infer_python.txt
浏览文件 @
a1fa19cd
===========================train_params===========================
model_name:MobileViT
v
3_XXS
model_name:MobileViT
V
3_XXS
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
...
...
@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XXS.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XXS.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
...
...
@@ -21,13 +21,13 @@ null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XXS.yaml
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XXS.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_XXS.yaml
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_XXS.yaml
quant_export:null
fpgm_export:null
distill_export:null
...
...
test_tipc/configs/MobileViTv3/MobileViT
v
3_x0_5_train_infer_python.txt
→
test_tipc/configs/MobileViTv3/MobileViT
V
3_x0_5_train_infer_python.txt
浏览文件 @
a1fa19cd
===========================train_params===========================
model_name:MobileViT
v
3_x0_5
model_name:MobileViT
V
3_x0_5
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
...
...
@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
...
...
@@ -21,13 +21,13 @@ null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x0_5.yaml
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x0_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x0_5.yaml
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x0_5.yaml
quant_export:null
fpgm_export:null
distill_export:null
...
...
test_tipc/configs/MobileViTv3/MobileViT
v
3_x0_75_train_infer_python.txt
→
test_tipc/configs/MobileViTv3/MobileViT
V
3_x0_75_train_infer_python.txt
浏览文件 @
a1fa19cd
===========================train_params===========================
model_name:MobileViT
v
3_x0_75
model_name:MobileViT
V
3_x0_75
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
...
...
@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x0_75.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x0_75.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
...
...
@@ -21,13 +21,13 @@ null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x0_75.yaml
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x0_75.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x0_75.yaml
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x0_75.yaml
quant_export:null
fpgm_export:null
distill_export:null
...
...
test_tipc/configs/MobileViTv3/MobileViT
v
3_x1_0_train_infer_python.txt
→
test_tipc/configs/MobileViTv3/MobileViT
V
3_x1_0_train_infer_python.txt
浏览文件 @
a1fa19cd
===========================train_params===========================
model_name:MobileViT
v
3_x1_0
model_name:MobileViT
V
3_x1_0
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
...
...
@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
...
...
@@ -21,13 +21,13 @@ null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x1_0.yaml
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
v3/MobileViTv
3_x1_0.yaml
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViT
V3/MobileViTV
3_x1_0.yaml
quant_export:null
fpgm_export:null
distill_export:null
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录