diff --git a/docs/zh_CN/models/ImageNet1k/MobileViTv3.md b/docs/zh_CN/models/ImageNet1k/MobileViTV3.md similarity index 79% rename from docs/zh_CN/models/ImageNet1k/MobileViTv3.md rename to docs/zh_CN/models/ImageNet1k/MobileViTV3.md index 179a35dcc20b012b0a1d543010f7a488e7772e16..604af7e07d494be1920a2792dea82966df59ec97 100644 --- a/docs/zh_CN/models/ImageNet1k/MobileViTv3.md +++ b/docs/zh_CN/models/ImageNet1k/MobileViTV3.md @@ -1,4 +1,4 @@ -# MobileviTv3 +# MobileviTV3 ----- ## 目录 @@ -24,8 +24,8 @@ ### 1.1 模型简介 -MobileViTv3 是一个结合 CNN 和 ViT 的轻量级模型,用于移动视觉任务。通过 MobileViTv3-block 解决了 MobileViTv1 的扩展问题并简化了学习任务,从而得倒了 MobileViTv3-XXS、XS 和 S 模型,在 ImageNet-1k、ADE20K、COCO 和 PascalVOC2012 数据集上表现优于 MobileViTv1。 -通过将提出的融合块添加到 MobileViTv2 中,创建 MobileViTv3-0.5、0.75 和 1.0 模型,在ImageNet-1k、ADE20K、COCO和PascalVOC2012数据集上给出了比 MobileViTv2 更好的准确性数据。[论文地址](https://arxiv.org/abs/2209.15159)。 +MobileViTV3 是一个结合 CNN 和 ViT 的轻量级模型,用于移动视觉任务。通过 MobileViTV3-block 解决了 MobileViTV1 的扩展问题并简化了学习任务,从而得倒了 MobileViTV3-XXS、XS 和 S 模型,在 ImageNet-1k、ADE20K、COCO 和 PascalVOC2012 数据集上表现优于 MobileViTV1。 +通过将提出的融合块添加到 MobileViTV2 中,创建 MobileViTV3_x0_5、MobileViTV3_x0_75 和 MobileViTV3_x1_0 模型,在ImageNet-1k、ADE20K、COCO和PascalVOC2012数据集上给出了比 MobileViTV2 更好的准确性数据。[论文地址](https://arxiv.org/abs/2209.15159)。 @@ -33,15 +33,15 @@ MobileViTv3 是一个结合 CNN 和 ViT 的轻量级模型,用于移动视觉 | Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPs
(G) | Params
(M) | |:--:|:--:|:--:|:--:|:--:|:--:|:--:| -| MobileViTv3_XXS | 0.7087 | 0.8976 | 0.7098 | - | 289.02 | 1.25 | -| MobileViTv3_XS | 0.7663 | 0.9332 | 0.7671 | - | 926.98 | 2.49 | -| MobileViTv3_S | 0.7928 | 0.9454 | 0.7930 | - | 1841.39 | 5.76 | -| MobileViTv3_XXS_L2 | 0.7028 | 0.8942 | 0.7023 | - | 256.97 | 1.15 | -| MobileViTv3_XS_L2 | 0.7607 | 0.9300 | 0.7610 | - | 852.82 | 2.26 | -| MobileViTv3_S_L2 | 0.7907 | 0.9440 | 0.7906 | - | 1651.96 | 5.17 | -| MobileViTv3_x0_5 | 0.7200 | 0.9083 | 0.7233 | - | 481.33 | 1.43 | -| MobileViTv3_x0_75 | 0.7626 | 0.9308 | 0.7655 | - | 1064.48 | 3.00 | -| MobileViTv3_x1_0 | 0.7838 | 0.9421 | 0.7864 | - | 1875.96 | 5.14 | +| MobileViTV3_XXS | 0.7087 | 0.8976 | 0.7098 | - | 289.02 | 1.25 | +| MobileViTV3_XS | 0.7663 | 0.9332 | 0.7671 | - | 926.98 | 2.49 | +| MobileViTV3_S | 0.7928 | 0.9454 | 0.7930 | - | 1841.39 | 5.76 | +| MobileViTV3_XXS_L2 | 0.7028 | 0.8942 | 0.7023 | - | 256.97 | 1.15 | +| MobileViTV3_XS_L2 | 0.7607 | 0.9300 | 0.7610 | - | 852.82 | 2.26 | +| MobileViTV3_S_L2 | 0.7907 | 0.9440 | 0.7906 | - | 1651.96 | 5.17 | +| MobileViTV3_x0_5 | 0.7200 | 0.9083 | 0.7233 | - | 481.33 | 1.43 | +| MobileViTV3_x0_75 | 0.7626 | 0.9308 | 0.7655 | - | 1064.48 | 3.00 | +| MobileViTV3_x1_0 | 0.7838 | 0.9421 | 0.7864 | - | 1875.96 | 5.14 | **备注:** PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。 @@ -55,7 +55,7 @@ MobileViTv3 是一个结合 CNN 和 ViT 的轻量级模型,用于移动视觉 ## 3. 模型训练、评估和预测 -此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/MobileViTv3/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。 +此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/MobileViTV3/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。 **备注:** 由于 MobileViT 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。 diff --git a/ppcls/arch/backbone/__init__.py b/ppcls/arch/backbone/__init__.py index 3248541aedad642b170b26695c06f42582f90c70..4acb57beb832e2b295986fad007b5957283405eb 100644 --- a/ppcls/arch/backbone/__init__.py +++ b/ppcls/arch/backbone/__init__.py @@ -79,8 +79,8 @@ from .model_zoo.cvt import CvT_13_224, CvT_13_384, CvT_21_224, CvT_21_384, CvT_W from .model_zoo.micronet import MicroNet_M0, MicroNet_M1, MicroNet_M2, MicroNet_M3 from .model_zoo.mobilenext import MobileNeXt_x0_35, MobileNeXt_x0_5, MobileNeXt_x0_75, MobileNeXt_x1_0, MobileNeXt_x1_4 from .model_zoo.mobilevit_v2 import MobileViTV2_x0_5, MobileViTV2_x0_75, MobileViTV2_x1_0, MobileViTV2_x1_25, MobileViTV2_x1_5, MobileViTV2_x1_75, MobileViTV2_x2_0 -from .model_zoo.mobilevit_v3 import MobileViTv3_XXS, MobileViTv3_XS, MobileViTv3_S, MobileViTv3_XXS_L2, MobileViTv3_XS_L2, MobileViTv3_S_L2, MobileViTv3_x0_5, MobileViTv3_x0_75, MobileViTv3_x1_0 from .model_zoo.tinynet import TinyNet_A, TinyNet_B, TinyNet_C, TinyNet_D, TinyNet_E +from .model_zoo.mobilevit_v3 import MobileViTV3_XXS, MobileViTV3_XS, MobileViTV3_S, MobileViTV3_XXS_L2, MobileViTV3_XS_L2, MobileViTV3_S_L2, MobileViTV3_x0_5, MobileViTV3_x0_75, MobileViTV3_x1_0 from .variant_models.resnet_variant import ResNet50_last_stage_stride1 from .variant_models.resnet_variant import ResNet50_adaptive_max_pool2d diff --git a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S.yaml b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S.yaml similarity index 99% rename from ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S.yaml rename to ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S.yaml index 788278e753a497543e98b7434063d72757fb0d5f..08c81bd7c31b28ac5f776933f7e0573911afb803 100644 --- a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S.yaml +++ b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S.yaml @@ -28,7 +28,7 @@ EMA: # model architecture Arch: - name: MobileViTv3_S + name: MobileViTV3_S class_num: 1000 dropout: 0.1 diff --git a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S_L2.yaml b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S_L2.yaml similarity index 99% rename from ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S_L2.yaml rename to ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S_L2.yaml index da83341f841796e488df73e18dfe09793506cfe9..544f4e903bdc1da2cb49ee9efd8182e2d5d787a2 100644 --- a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S_L2.yaml +++ b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S_L2.yaml @@ -28,7 +28,7 @@ EMA: # model architecture Arch: - name: MobileViTv3_S_L2 + name: MobileViTV3_S_L2 class_num: 1000 dropout: 0.1 diff --git a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS.yaml b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS.yaml similarity index 99% rename from ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS.yaml rename to ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS.yaml index ceb775d16afb6aaa4ff915f03d2887989a0cc84c..21b30619a8ac510cc0413cea79b445f011b9ad5f 100644 --- a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS.yaml +++ b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS.yaml @@ -28,7 +28,7 @@ EMA: # model architecture Arch: - name: MobileViTv3_XS + name: MobileViTV3_XS class_num: 1000 dropout: 0.1 diff --git a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS_L2.yaml b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS_L2.yaml similarity index 99% rename from ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS_L2.yaml rename to ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS_L2.yaml index 70f4bc324de19accbeed22cdcf956847697da921..44cd42da734dc11a18cabbafeccba5fada015c1a 100644 --- a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS_L2.yaml +++ b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS_L2.yaml @@ -28,7 +28,7 @@ EMA: # model architecture Arch: - name: MobileViTv3_XS_L2 + name: MobileViTV3_XS_L2 class_num: 1000 dropout: 0.1 diff --git a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS.yaml b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS.yaml similarity index 99% rename from ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS.yaml rename to ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS.yaml index 271b2bbcd4b4ddf4fbec82e80307e5db15624254..bbf1c7ace450afd46980d835fb3f139ba52a6a73 100644 --- a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS.yaml +++ b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS.yaml @@ -28,7 +28,7 @@ EMA: # model architecture Arch: - name: MobileViTv3_XXS + name: MobileViTV3_XXS class_num: 1000 dropout: 0.05 diff --git a/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS_L2.yaml b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS_L2.yaml new file mode 100644 index 0000000000000000000000000000000000000000..840afc5d59bb0b4c3b47ace81e10d28d731e7dc1 --- /dev/null +++ b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS_L2.yaml @@ -0,0 +1,150 @@ +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: ./output/ + device: gpu + save_interval: 1 + eval_during_train: True + eval_interval: 1 + epochs: 300 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 256, 256] + save_inference_dir: ./inference + use_dali: False + +# mixed precision training +AMP: + scale_loss: 65536 + use_dynamic_loss_scaling: True + # O1: mixed fp16 + level: O1 + +# model ema +EMA: + decay: 0.9995 + +# model architecture +Arch: + name: MobileViTV3_XXS_L2 + class_num: 1000 + dropout: 0.1 + +# loss function config for traing/eval process +Loss: + Train: + - CELoss: + weight: 1.0 + epsilon: 0.1 + Eval: + - CELoss: + weight: 1.0 + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + epsilon: 1e-8 + weight_decay: 0.01 + lr: + name: Cosine + learning_rate: 0.002 # for total batch size 384 + eta_min: 0.0002 + warmup_epoch: 1 # 3000 iterations + warmup_start_lr: 0.0002 + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: MultiScaleDataset + image_root: ./dataset/ILSVRC2012/ + cls_label_path: ./dataset/ILSVRC2012/train_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + - RandCropImage: + size: 256 + interpolation: bilinear + use_log_aspect: True + - RandFlipImage: + flip_code: 1 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + # support to specify width and height respectively: + # scales: [(256,256) (160,160), (192,192), (224,224) (288,288) (320,320)] + sampler: + name: MultiScaleSampler + scales: [256, 160, 192, 224, 288, 320] + # first_bs: batch size for the first image resolution in the scales list + # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple + first_bs: 48 + divided_factor: 32 + is_training: True + loader: + num_workers: 4 + use_shared_memory: True + Eval: + dataset: + name: ImageNetDataset + image_root: ./dataset/ILSVRC2012/ + cls_label_path: ./dataset/ILSVRC2012/val_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 288 + interpolation: bilinear + - CropImage: + size: 256 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + sampler: + name: DistributedBatchSampler + batch_size: 48 + drop_last: False + shuffle: False + loader: + num_workers: 4 + use_shared_memory: True + +Infer: + infer_imgs: docs/images/inference_deployment/whl_demo.jpg + batch_size: 10 + transforms: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 288 + interpolation: bilinear + - CropImage: + size: 256 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + - ToCHWImage: + PostProcess: + name: Topk + topk: 5 + class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + +Metric: + Train: + - TopkAcc: + topk: [1, 5] + Eval: + - TopkAcc: + topk: [1, 5] diff --git a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_5.yaml b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_5.yaml similarity index 99% rename from ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_5.yaml rename to ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_5.yaml index fbdc5652fb5d43999b6e26d2a2f8d29dc754e85b..99544b39cbbcebe5edb94533647e865af150c8e2 100644 --- a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_5.yaml +++ b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_5.yaml @@ -28,7 +28,7 @@ EMA: # model architecture Arch: - name: MobileViTv3_x0_5 + name: MobileViTV3_x0_5 class_num: 1000 classifier_dropout: 0. diff --git a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_75.yaml b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_75.yaml similarity index 99% rename from ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_75.yaml rename to ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_75.yaml index 167b1059247585db240af3f1a5a2b3cf5dd17292..405e8f6a21ab291770e5776493e84ba2bd3e1b74 100644 --- a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_75.yaml +++ b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_75.yaml @@ -28,7 +28,7 @@ EMA: # model architecture Arch: - name: MobileViTv3_x0_75 + name: MobileViTV3_x0_75 class_num: 1000 classifier_dropout: 0. diff --git a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x1_0.yaml b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x1_0.yaml similarity index 99% rename from ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x1_0.yaml rename to ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x1_0.yaml index e4c4cc9e694e03ac04fd70488b75948d50db9fa7..a1b101e4cc86c1a3b9017edc23fd48c503d0ca16 100644 --- a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x1_0.yaml +++ b/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x1_0.yaml @@ -28,7 +28,7 @@ EMA: # model architecture Arch: - name: MobileViTv3_x1_0 + name: MobileViTV3_x1_0 class_num: 1000 classifier_dropout: 0. diff --git a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS_L2.yaml b/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS_L2.yaml deleted file mode 100644 index d01b13646ae24cf59f5c4c4f1880d5c7db1bb2fb..0000000000000000000000000000000000000000 --- a/ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS_L2.yaml +++ /dev/null @@ -1,150 +0,0 @@ -# global configs -Global: - checkpoints: null - pretrained_model: null - output_dir: ./output/ - device: gpu - save_interval: 1 - eval_during_train: True - eval_interval: 1 - epochs: 300 - print_batch_step: 10 - use_visualdl: False - # used for static mode and model export - image_shape: [3, 256, 256] - save_inference_dir: ./inference - use_dali: False - -# mixed precision training -AMP: - scale_loss: 65536 - use_dynamic_loss_scaling: True - # O1: mixed fp16 - level: O1 - -# model ema -EMA: - decay: 0.9995 - -# model architecture -Arch: - name: MobileViTv3_XXS_L2 - class_num: 1000 - dropout: 0.1 - -# loss function config for traing/eval process -Loss: - Train: - - CELoss: - weight: 1.0 - epsilon: 0.1 - Eval: - - CELoss: - weight: 1.0 - -Optimizer: - name: AdamW - beta1: 0.9 - beta2: 0.999 - epsilon: 1e-8 - weight_decay: 0.01 - lr: - name: Cosine - learning_rate: 0.002 # for total batch size 384 - eta_min: 0.0002 - warmup_epoch: 1 # 3000 iterations - warmup_start_lr: 0.0002 - -# data loader for train and eval -DataLoader: - Train: - dataset: - name: MultiScaleDataset - image_root: ./dataset/ILSVRC2012/ - cls_label_path: ./dataset/ILSVRC2012/train_list.txt - transform_ops: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 256 - interpolation: bilinear - use_log_aspect: True - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.0, 0.0, 0.0] - std: [1.0, 1.0, 1.0] - order: '' - # support to specify width and height respectively: - # scales: [(256,256) (160,160), (192,192), (224,224) (288,288) (320,320)] - sampler: - name: MultiScaleSampler - scales: [256, 160, 192, 224, 288, 320] - # first_bs: batch size for the first image resolution in the scales list - # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple - first_bs: 48 - divided_factor: 32 - is_training: True - loader: - num_workers: 4 - use_shared_memory: True - Eval: - dataset: - name: ImageNetDataset - image_root: ./dataset/ILSVRC2012/ - cls_label_path: ./dataset/ILSVRC2012/val_list.txt - transform_ops: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 288 - interpolation: bilinear - - CropImage: - size: 256 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.0, 0.0, 0.0] - std: [1.0, 1.0, 1.0] - order: '' - sampler: - name: DistributedBatchSampler - batch_size: 48 - drop_last: False - shuffle: False - loader: - num_workers: 4 - use_shared_memory: True - -Infer: - infer_imgs: docs/images/inference_deployment/whl_demo.jpg - batch_size: 10 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 288 - interpolation: bilinear - - CropImage: - size: 256 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.0, 0.0, 0.0] - std: [1.0, 1.0, 1.0] - order: '' - - ToCHWImage: - PostProcess: - name: Topk - topk: 5 - class_id_map_file: ppcls/utils/imagenet1k_label_list.txt - -Metric: - Train: - - TopkAcc: - topk: [1, 5] - Eval: - - TopkAcc: - topk: [1, 5] diff --git a/test_tipc/configs/MobileViTv3/MobileViTv3_S_L2_train_infer_python.txt b/test_tipc/configs/MobileViTv3/MobileViTV3_S_L2_train_infer_python.txt similarity index 89% rename from test_tipc/configs/MobileViTv3/MobileViTv3_S_L2_train_infer_python.txt rename to test_tipc/configs/MobileViTv3/MobileViTV3_S_L2_train_infer_python.txt index fb11e8706f16cc5da96e281b41b0789390afcea7..c2b31a0ae660412f2b151d9840cfe3d276d73b19 100644 --- a/test_tipc/configs/MobileViTv3/MobileViTv3_S_L2_train_infer_python.txt +++ b/test_tipc/configs/MobileViTv3/MobileViTV3_S_L2_train_infer_python.txt @@ -1,5 +1,5 @@ ===========================train_params=========================== -model_name:MobileViTv3_S_L2 +model_name:MobileViTV3_S_L2 python:python3.7 gpu_list:0|0,1 -o Global.device:gpu @@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val null:null ## trainer:norm_train -norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 pact_train:null fpgm_train:null distill_train:null @@ -21,13 +21,13 @@ null:null null:null ## ===========================eval_params=========================== -eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S_L2.yaml +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S_L2.yaml null:null ## ===========================infer_params========================== -o Global.save_inference_dir:./inference -o Global.pretrained_model: -norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S_L2.yaml +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S_L2.yaml quant_export:null fpgm_export:null distill_export:null diff --git a/test_tipc/configs/MobileViTv3/MobileViTv3_S_train_infer_python.txt b/test_tipc/configs/MobileViTv3/MobileViTV3_S_train_infer_python.txt similarity index 89% rename from test_tipc/configs/MobileViTv3/MobileViTv3_S_train_infer_python.txt rename to test_tipc/configs/MobileViTv3/MobileViTV3_S_train_infer_python.txt index 4268bb76a0e5bc2748145b13d2bdb168abda0b0c..9d15dc2c80deadc16bd7b3a34f0fdace4cecfbfd 100644 --- a/test_tipc/configs/MobileViTv3/MobileViTv3_S_train_infer_python.txt +++ b/test_tipc/configs/MobileViTv3/MobileViTV3_S_train_infer_python.txt @@ -1,5 +1,5 @@ ===========================train_params=========================== -model_name:MobileViTv3_S +model_name:MobileViTV3_S python:python3.7 gpu_list:0|0,1 -o Global.device:gpu @@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val null:null ## trainer:norm_train -norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 pact_train:null fpgm_train:null distill_train:null @@ -21,13 +21,13 @@ null:null null:null ## ===========================eval_params=========================== -eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S.yaml +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S.yaml null:null ## ===========================infer_params========================== -o Global.save_inference_dir:./inference -o Global.pretrained_model: -norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S.yaml +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_S.yaml quant_export:null fpgm_export:null distill_export:null diff --git a/test_tipc/configs/MobileViTv3/MobileViTv3_XS_L2_train_infer_python.txt b/test_tipc/configs/MobileViTv3/MobileViTV3_XS_L2_train_infer_python.txt similarity index 89% rename from test_tipc/configs/MobileViTv3/MobileViTv3_XS_L2_train_infer_python.txt rename to test_tipc/configs/MobileViTv3/MobileViTV3_XS_L2_train_infer_python.txt index c5b219476e05ed76f6f6bf393b5c59ceafa3b1be..0ebb5890cbbe972807619a2ef8a997bba8ffc6aa 100644 --- a/test_tipc/configs/MobileViTv3/MobileViTv3_XS_L2_train_infer_python.txt +++ b/test_tipc/configs/MobileViTv3/MobileViTV3_XS_L2_train_infer_python.txt @@ -1,5 +1,5 @@ ===========================train_params=========================== -model_name:MobileViTv3_XS_L2 +model_name:MobileViTV3_XS_L2 python:python3.7 gpu_list:0|0,1 -o Global.device:gpu @@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val null:null ## trainer:norm_train -norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 pact_train:null fpgm_train:null distill_train:null @@ -21,13 +21,13 @@ null:null null:null ## ===========================eval_params=========================== -eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS_L2.yaml +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS_L2.yaml null:null ## ===========================infer_params========================== -o Global.save_inference_dir:./inference -o Global.pretrained_model: -norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS_L2.yaml +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS_L2.yaml quant_export:null fpgm_export:null distill_export:null diff --git a/test_tipc/configs/MobileViTv3/MobileViTv3_XS_train_infer_python.txt b/test_tipc/configs/MobileViTv3/MobileViTV3_XS_train_infer_python.txt similarity index 89% rename from test_tipc/configs/MobileViTv3/MobileViTv3_XS_train_infer_python.txt rename to test_tipc/configs/MobileViTv3/MobileViTV3_XS_train_infer_python.txt index 78756c6694e92b5a7b0d53049ce3661f60207b66..fc0373741d60937a7bbb715c4b25315f2571c1c4 100644 --- a/test_tipc/configs/MobileViTv3/MobileViTv3_XS_train_infer_python.txt +++ b/test_tipc/configs/MobileViTv3/MobileViTV3_XS_train_infer_python.txt @@ -1,5 +1,5 @@ ===========================train_params=========================== -model_name:MobileViTv3_XS +model_name:MobileViTV3_XS python:python3.7 gpu_list:0|0,1 -o Global.device:gpu @@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val null:null ## trainer:norm_train -norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 pact_train:null fpgm_train:null distill_train:null @@ -21,13 +21,13 @@ null:null null:null ## ===========================eval_params=========================== -eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS.yaml +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS.yaml null:null ## ===========================infer_params========================== -o Global.save_inference_dir:./inference -o Global.pretrained_model: -norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XS.yaml +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XS.yaml quant_export:null fpgm_export:null distill_export:null diff --git a/test_tipc/configs/MobileViTv3/MobileViTv3_XXS_L2_train_infer_python.txt b/test_tipc/configs/MobileViTv3/MobileViTV3_XXS_L2_train_infer_python.txt similarity index 89% rename from test_tipc/configs/MobileViTv3/MobileViTv3_XXS_L2_train_infer_python.txt rename to test_tipc/configs/MobileViTv3/MobileViTV3_XXS_L2_train_infer_python.txt index d38a431ef95a0f410f74d43f8309ac7e1e5c4c50..62a40aa454b03aa1bfa5f20bf6364b5f8c84ab9c 100644 --- a/test_tipc/configs/MobileViTv3/MobileViTv3_XXS_L2_train_infer_python.txt +++ b/test_tipc/configs/MobileViTv3/MobileViTV3_XXS_L2_train_infer_python.txt @@ -1,5 +1,5 @@ ===========================train_params=========================== -model_name:MobileViTv3_XXS_L2 +model_name:MobileViTV3_XXS_L2 python:python3.7 gpu_list:0|0,1 -o Global.device:gpu @@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val null:null ## trainer:norm_train -norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS_L2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 pact_train:null fpgm_train:null distill_train:null @@ -21,13 +21,13 @@ null:null null:null ## ===========================eval_params=========================== -eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS_L2.yaml +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS_L2.yaml null:null ## ===========================infer_params========================== -o Global.save_inference_dir:./inference -o Global.pretrained_model: -norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS_L2.yaml +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS_L2.yaml quant_export:null fpgm_export:null distill_export:null diff --git a/test_tipc/configs/MobileViTv3/MobileViTv3_XXS_train_infer_python.txt b/test_tipc/configs/MobileViTv3/MobileViTV3_XXS_train_infer_python.txt similarity index 89% rename from test_tipc/configs/MobileViTv3/MobileViTv3_XXS_train_infer_python.txt rename to test_tipc/configs/MobileViTv3/MobileViTV3_XXS_train_infer_python.txt index 40b809634b63f248dcb614ac664a670e8daebba1..b9d3d99ab8c565db5120892272dc83d7b5acf349 100644 --- a/test_tipc/configs/MobileViTv3/MobileViTv3_XXS_train_infer_python.txt +++ b/test_tipc/configs/MobileViTv3/MobileViTV3_XXS_train_infer_python.txt @@ -1,5 +1,5 @@ ===========================train_params=========================== -model_name:MobileViTv3_XXS +model_name:MobileViTV3_XXS python:python3.7 gpu_list:0|0,1 -o Global.device:gpu @@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val null:null ## trainer:norm_train -norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 pact_train:null fpgm_train:null distill_train:null @@ -21,13 +21,13 @@ null:null null:null ## ===========================eval_params=========================== -eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS.yaml +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS.yaml null:null ## ===========================infer_params========================== -o Global.save_inference_dir:./inference -o Global.pretrained_model: -norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_XXS.yaml +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_XXS.yaml quant_export:null fpgm_export:null distill_export:null diff --git a/test_tipc/configs/MobileViTv3/MobileViTv3_x0_5_train_infer_python.txt b/test_tipc/configs/MobileViTv3/MobileViTV3_x0_5_train_infer_python.txt similarity index 89% rename from test_tipc/configs/MobileViTv3/MobileViTv3_x0_5_train_infer_python.txt rename to test_tipc/configs/MobileViTv3/MobileViTV3_x0_5_train_infer_python.txt index 5b738387078f8dca330ef901b4812bf14cccc224..8013de52c832885536fa9c4cc6cea653d7165b29 100644 --- a/test_tipc/configs/MobileViTv3/MobileViTv3_x0_5_train_infer_python.txt +++ b/test_tipc/configs/MobileViTv3/MobileViTV3_x0_5_train_infer_python.txt @@ -1,5 +1,5 @@ ===========================train_params=========================== -model_name:MobileViTv3_x0_5 +model_name:MobileViTV3_x0_5 python:python3.7 gpu_list:0|0,1 -o Global.device:gpu @@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val null:null ## trainer:norm_train -norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 pact_train:null fpgm_train:null distill_train:null @@ -21,13 +21,13 @@ null:null null:null ## ===========================eval_params=========================== -eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_5.yaml +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_5.yaml null:null ## ===========================infer_params========================== -o Global.save_inference_dir:./inference -o Global.pretrained_model: -norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_5.yaml +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_5.yaml quant_export:null fpgm_export:null distill_export:null diff --git a/test_tipc/configs/MobileViTv3/MobileViTv3_x0_75_train_infer_python.txt b/test_tipc/configs/MobileViTv3/MobileViTV3_x0_75_train_infer_python.txt similarity index 89% rename from test_tipc/configs/MobileViTv3/MobileViTv3_x0_75_train_infer_python.txt rename to test_tipc/configs/MobileViTv3/MobileViTV3_x0_75_train_infer_python.txt index 51a4dbe6c0e4324d4b4cef3eaedbd1619ae1e99b..2645a161f62ba9d418593d53fc79439772f6f1c0 100644 --- a/test_tipc/configs/MobileViTv3/MobileViTv3_x0_75_train_infer_python.txt +++ b/test_tipc/configs/MobileViTv3/MobileViTV3_x0_75_train_infer_python.txt @@ -1,5 +1,5 @@ ===========================train_params=========================== -model_name:MobileViTv3_x0_75 +model_name:MobileViTV3_x0_75 python:python3.7 gpu_list:0|0,1 -o Global.device:gpu @@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val null:null ## trainer:norm_train -norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_75.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_75.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 pact_train:null fpgm_train:null distill_train:null @@ -21,13 +21,13 @@ null:null null:null ## ===========================eval_params=========================== -eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_75.yaml +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_75.yaml null:null ## ===========================infer_params========================== -o Global.save_inference_dir:./inference -o Global.pretrained_model: -norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x0_75.yaml +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x0_75.yaml quant_export:null fpgm_export:null distill_export:null diff --git a/test_tipc/configs/MobileViTv3/MobileViTv3_x1_0_train_infer_python.txt b/test_tipc/configs/MobileViTv3/MobileViTV3_x1_0_train_infer_python.txt similarity index 89% rename from test_tipc/configs/MobileViTv3/MobileViTv3_x1_0_train_infer_python.txt rename to test_tipc/configs/MobileViTv3/MobileViTV3_x1_0_train_infer_python.txt index 950c374b68a6972cda10756ce478f2c3b771e1d7..19403ab0dd3bba83474522ee03f8cde5a34454ac 100644 --- a/test_tipc/configs/MobileViTv3/MobileViTv3_x1_0_train_infer_python.txt +++ b/test_tipc/configs/MobileViTv3/MobileViTV3_x1_0_train_infer_python.txt @@ -1,5 +1,5 @@ ===========================train_params=========================== -model_name:MobileViTv3_x1_0 +model_name:MobileViTV3_x1_0 python:python3.7 gpu_list:0|0,1 -o Global.device:gpu @@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val null:null ## trainer:norm_train -norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 pact_train:null fpgm_train:null distill_train:null @@ -21,13 +21,13 @@ null:null null:null ## ===========================eval_params=========================== -eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x1_0.yaml +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x1_0.yaml null:null ## ===========================infer_params========================== -o Global.save_inference_dir:./inference -o Global.pretrained_model: -norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x1_0.yaml +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x1_0.yaml quant_export:null fpgm_export:null distill_export:null