Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
a175ce5e
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a175ce5e
编写于
6月 08, 2021
作者:
W
Wei Shengyu
提交者:
GitHub
6月 08, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #800 from cuicheng01/develop_reg
Add products configs
上级
56d82ea0
05aa04f7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
454 addition
and
1 deletion
+454
-1
ppcls/arch/gears/fc.py
ppcls/arch/gears/fc.py
+1
-1
ppcls/configs/Products/ResNet50_vd_Aliproduct.yaml
ppcls/configs/Products/ResNet50_vd_Aliproduct.yaml
+127
-0
ppcls/configs/Products/ResNet50_vd_Inshop.yaml
ppcls/configs/Products/ResNet50_vd_Inshop.yaml
+163
-0
ppcls/configs/Products/ResNet50_vd_SOP.yaml
ppcls/configs/Products/ResNet50_vd_SOP.yaml
+163
-0
未找到文件。
ppcls/arch/gears/fc.py
浏览文件 @
a175ce5e
...
...
@@ -30,6 +30,6 @@ class FC(nn.Layer):
self
.
fc
=
paddle
.
nn
.
Linear
(
self
.
embedding_size
,
self
.
class_num
,
weight_attr
=
weight_attr
)
def
forward
(
self
,
input
):
def
forward
(
self
,
input
,
label
=
None
):
out
=
self
.
fc
(
input
)
return
out
ppcls/configs/Products/ResNet50_vd_Aliproduct.yaml
0 → 100644
浏览文件 @
a175ce5e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
class_num
:
50030
save_interval
:
10
eval_during_train
:
False
eval_interval
:
1
epochs
:
120
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
"
./inference"
eval_mode
:
"
classification"
# model architecture
Arch
:
name
:
"
RecModel"
Backbone
:
name
:
"
ResNet50_vd"
pretrained
:
False
BackboneStopLayer
:
name
:
"
flatten_0"
Neck
:
name
:
"
FC"
embedding_size
:
2048
class_num
:
512
Head
:
name
:
"
FC"
embedding_size
:
512
class_num
:
50030
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.05
regularizer
:
name
:
'
L2'
coeff
:
0.00007
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
"
ImageNetDataset"
image_root
:
"
./dataset/Aliproduct/"
cls_label_path
:
"
./dataset/Aliproduct/train_list.txt"
transform_ops
:
-
ResizeImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
0.00392157
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
6
use_shared_memory
:
False
Eval
:
# TOTO: modify to the latest trainer
dataset
:
name
:
"
ImageNetDataset"
image_root
:
"
./dataset/Aliproduct/"
cls_label_path
:
"
./dataset/Aliproduct/val_list.txt"
transform_ops
:
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
0.00392157
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
6
use_shared_memory
:
False
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
5
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
5
]
Infer
:
infer_imgs
:
"
docs/images/whl/demo.jpg"
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
ppcls/configs/Products/ResNet50_vd_Inshop.yaml
0 → 100644
浏览文件 @
a175ce5e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
class_num
:
3997
save_interval
:
10
eval_during_train
:
False
eval_interval
:
1
epochs
:
120
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
"
./inference"
eval_mode
:
"
retrieval"
# model architecture
Arch
:
name
:
"
RecModel"
Backbone
:
name
:
"
ResNet50_vd"
pretrained
:
False
BackboneStopLayer
:
name
:
"
flatten_0"
Neck
:
name
:
"
FC"
embedding_size
:
2048
class_num
:
512
Head
:
name
:
"
ArcMargin"
embedding_size
:
512
class_num
:
3997
margin
:
0.15
scale
:
30
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
-
TripletLossV2
:
weight
:
1.0
margin
:
0.5
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
MultiStepDecay
learning_rate
:
0.01
milestones
:
[
30
,
60
,
70
,
80
,
90
,
100
]
gamma
:
0.5
verbose
:
False
last_epoch
:
-1
regularizer
:
name
:
'
L2'
coeff
:
0.0005
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
"
ImageNetDataset"
image_root
:
"
./dataset/Inshop/"
cls_label_path
:
"
./dataset/Inshop/train_list.txt"
transform_ops
:
-
ResizeImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
0.00392157
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.5
sl
:
0.02
sh
:
0.4
r1
:
0.3
mean
:
[
0.
,
0.
,
0.
]
sampler
:
name
:
DistributedRandomIdentitySampler
batch_size
:
64
num_instances
:
2
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
6
use_shared_memory
:
False
Eval
:
Query
:
# TOTO: modify to the latest trainer
dataset
:
name
:
"
ImageNetDataset"
image_root
:
"
./dataset/Inshop/"
cls_label_path
:
"
./dataset/Inshop/query_list.txt"
transform_ops
:
-
ResizeImage
:
size
:
224
-
NormalizeImage
:
scale
:
0.00392157
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
6
use_shared_memory
:
False
Gallery
:
# TOTO: modify to the latest trainer
dataset
:
name
:
"
ImageNetDataset"
image_root
:
"
./dataset/Inshop/"
cls_label_path
:
"
./dataset/Inshop/gallery_list.txt"
transform_ops
:
-
ResizeImage
:
size
:
224
-
NormalizeImage
:
scale
:
0.00392157
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
6
use_shared_memory
:
False
Metric
:
Eval
:
-
Recallk
:
topk
:
[
1
,
5
]
Infer
:
infer_imgs
:
"
docs/images/whl/demo.jpg"
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
ppcls/configs/Products/ResNet50_vd_SOP.yaml
0 → 100644
浏览文件 @
a175ce5e
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
class_num
:
11319
save_interval
:
10
eval_during_train
:
False
eval_interval
:
1
epochs
:
120
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
"
./inference"
eval_mode
:
"
retrieval"
# model architecture
Arch
:
name
:
"
RecModel"
Backbone
:
name
:
"
ResNet50_vd"
pretrained
:
False
BackboneStopLayer
:
name
:
"
flatten_0"
Neck
:
name
:
"
FC"
embedding_size
:
2048
class_num
:
512
Head
:
name
:
"
ArcMargin"
embedding_size
:
512
class_num
:
11319
margin
:
0.15
scale
:
30
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
-
TripletLossV2
:
weight
:
1.0
margin
:
0.5
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
MultiStepDecay
learning_rate
:
0.01
milestones
:
[
30
,
60
,
70
,
80
,
90
,
100
]
gamma
:
0.5
verbose
:
False
last_epoch
:
-1
regularizer
:
name
:
'
L2'
coeff
:
0.0005
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
"
ImageNetDataset"
image_root
:
"
./dataset/Stanford_Online_Products/"
cls_label_path
:
"
./dataset/Stanford_Online_Products/train_list.txt"
transform_ops
:
-
ResizeImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
0.00392157
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.5
sl
:
0.02
sh
:
0.4
r1
:
0.3
mean
:
[
0.
,
0.
,
0.
]
sampler
:
name
:
DistributedRandomIdentitySampler
batch_size
:
64
num_instances
:
2
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
6
use_shared_memory
:
False
Eval
:
Query
:
# TOTO: modify to the latest trainer
dataset
:
name
:
"
ImageNetDataset"
image_root
:
"
./dataset/Stanford_Online_Products/"
cls_label_path
:
"
./dataset/Stanford_Online_Products/test_list.txt"
transform_ops
:
-
ResizeImage
:
size
:
224
-
NormalizeImage
:
scale
:
0.00392157
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
32
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
6
use_shared_memory
:
False
Gallery
:
# TOTO: modify to the latest trainer
dataset
:
name
:
"
ImageNetDataset"
image_root
:
"
./dataset/Stanford_Online_Products/"
cls_label_path
:
"
./dataset/Stanford_Online_Products/test_list.txt"
transform_ops
:
-
ResizeImage
:
size
:
224
-
NormalizeImage
:
scale
:
0.00392157
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
32
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
6
use_shared_memory
:
False
Metric
:
Eval
:
-
Recallk
:
topk
:
[
1
,
5
]
Infer
:
infer_imgs
:
"
docs/images/whl/demo.jpg"
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录