未验证 提交 56d82ea0 编写于 作者: B Bin Lu 提交者: GitHub

Merge pull request #797 from FredHuang16/patch-6

add logo config 
......@@ -20,7 +20,7 @@ import paddle.nn.functional as F
class CircleMargin(nn.Layer):
def __init__(self, embedding_size, class_num, margin, scale):
super(CircleSoftmax, self).__init__()
super(CircleMargin, self).__init__()
self.scale = scale
self.margin = margin
self.embedding_size = embedding_size
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
class_num: 3000
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 120
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: "./inference"
eval_mode: "retrieval"
# model architecture
Arch:
name: "RecModel"
Backbone:
name: "ResNet50_last_stage_stride1"
pretrained: True
BackboneStopLayer:
name: "adaptive_avg_pool2d_0"
Neck:
name: "VehicleNeck"
in_channels: 2048
out_channels: 512
Head:
name: "CircleMargin"
margin: 0.35
scale: 64
embedding_size: 512
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
- PairwiseCosface:
margin: 0.35
gamma: 64
weight: 1.0
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.01
regularizer:
name: 'L2'
coeff: 0.0001
# data loader for train and eval
DataLoader:
Train:
dataset:
name: LogoDataset
image_root: "dataset/LogoDet-3K-crop/train/"
cls_label_path: "dataset/LogoDet-3K-crop/LogoDet-3K+train.txt"
transform_ops:
- ResizeImage:
size: 224
- RandFlipImage:
flip_code: 1
- AugMix:
prob: 0.5
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.5
sampler:
name: DistributedRandomIdentitySampler
batch_size: 128
num_instances: 2
drop_last: False
loader:
num_workers: 6
use_shared_memory: False
Eval:
Query:
# TOTO: modify to the latest trainer
dataset:
name: LogoDataset
image_root: "dataset/LogoDet-3K-crop/val/"
cls_label_path: "LogoDet-3K-crop/LogoDet-3K+query.txt"
transform_ops:
- ResizeImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 10
use_shared_memory: False
Gallery:
# TOTO: modify to the latest trainer
dataset:
name: LogoDataset
image_root: "dataset/LogoDet-3K-crop/train/"
cls_label_path: "dataset/LogoDet-3K-crop/LogoDet-3K+gallery.txt"
transform_ops:
- ResizeImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 10
use_shared_memory: False
Metric:
Eval:
- Recallk:
topk: [1, 5]
- mAP: {}
Infer:
infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
......@@ -25,8 +25,10 @@ from ppcls.data.dataloader.imagenet_dataset import ImageNetDataset
from ppcls.data.dataloader.multilabel_dataset import MultiLabelDataset
from ppcls.data.dataloader.common_dataset import create_operators
from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
from ppcls.data.dataloader.logo_dataset import LogoDataset
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
# sampler
from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRandomIdentitySampler
from ppcls.data.preprocess import transform
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import io
import tarfile
import numpy as np
from PIL import Image #all use default backend
import paddle
from paddle.io import Dataset
import pickle
import os
import cv2
import random
from .common_dataset import CommonDataset
class LogoDataset(CommonDataset):
def _load_anno(self):
assert os.path.exists(self._cls_path)
assert os.path.exists(self._img_root)
self.images = []
self.labels = []
with open(self._cls_path) as fd:
lines = fd.readlines()
for l in lines:
l = l.strip().split("\t")
if l[0] == 'image_id':
continue
self.images.append(os.path.join(self._img_root, l[3]))
self.labels.append(int(l[1])-1)
assert os.path.exists(self.images[-1])
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册