Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
9d3f36b7
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9d3f36b7
编写于
6月 28, 2020
作者:
L
littletomatodonkey
提交者:
GitHub
6月 28, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #161 from wqz960/PaddleClas-fs
add ghostnet
上级
500b35d5
ce6af542
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
490 addition
and
1 deletion
+490
-1
configs/GhostNet/GhostNet_x0_5.yaml
configs/GhostNet/GhostNet_x0_5.yaml
+74
-0
configs/GhostNet/GhostNet_x1_0.yaml
configs/GhostNet/GhostNet_x1_0.yaml
+74
-0
configs/GhostNet/GhostNet_x1_3.yaml
configs/GhostNet/GhostNet_x1_3.yaml
+75
-0
ppcls/modeling/architectures/__init__.py
ppcls/modeling/architectures/__init__.py
+2
-1
ppcls/modeling/architectures/ghostnet.py
ppcls/modeling/architectures/ghostnet.py
+265
-0
未找到文件。
configs/GhostNet/GhostNet_x0_5.yaml
0 → 100644
浏览文件 @
9d3f36b7
mode
:
'
train'
ARCHITECTURE
:
name
:
'
GhostNet_x0_5'
pretrained_model
:
"
"
model_save_dir
:
"
./output/"
classes_num
:
1000
total_images
:
1281167
save_interval
:
1
validate
:
True
valid_interval
:
1
epochs
:
360
topk
:
5
image_shape
:
[
3
,
224
,
224
]
use_mix
:
False
ls_epsilon
:
0.1
LEARNING_RATE
:
function
:
'
CosineWarmup'
params
:
lr
:
0.8
OPTIMIZER
:
function
:
'
Momentum'
params
:
momentum
:
0.9
regularizer
:
function
:
'
L2'
factor
:
0.0000400
TRAIN
:
batch_size
:
2048
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/train_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
False
channel_first
:
False
-
RandCropImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
VALID
:
batch_size
:
64
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/val_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
False
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
configs/GhostNet/GhostNet_x1_0.yaml
0 → 100644
浏览文件 @
9d3f36b7
mode
:
'
train'
ARCHITECTURE
:
name
:
'
GhostNet_x1_0'
pretrained_model
:
"
"
model_save_dir
:
"
./output/"
classes_num
:
1000
total_images
:
1281167
save_interval
:
1
validate
:
True
valid_interval
:
1
epochs
:
360
topk
:
5
image_shape
:
[
3
,
224
,
224
]
use_mix
:
False
ls_epsilon
:
0.1
LEARNING_RATE
:
function
:
'
CosineWarmup'
params
:
lr
:
0.4
OPTIMIZER
:
function
:
'
Momentum'
params
:
momentum
:
0.9
regularizer
:
function
:
'
L2'
factor
:
0.0000400
TRAIN
:
batch_size
:
1024
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/train_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
False
channel_first
:
False
-
RandCropImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
VALID
:
batch_size
:
64
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/val_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
False
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
configs/GhostNet/GhostNet_x1_3.yaml
0 → 100644
浏览文件 @
9d3f36b7
mode
:
'
train'
ARCHITECTURE
:
name
:
'
GhostNet_x1_3'
pretrained_model
:
"
"
model_save_dir
:
"
./output/"
classes_num
:
1000
total_images
:
1281167
save_interval
:
1
validate
:
True
valid_interval
:
1
epochs
:
360
topk
:
5
image_shape
:
[
3
,
224
,
224
]
use_mix
:
False
ls_epsilon
:
0.1
LEARNING_RATE
:
function
:
'
CosineWarmup'
params
:
lr
:
0.4
OPTIMIZER
:
function
:
'
Momentum'
params
:
momentum
:
0.9
regularizer
:
function
:
'
L2'
factor
:
0.0000400
TRAIN
:
batch_size
:
1024
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/train_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
False
channel_first
:
False
-
RandCropImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
AutoAugment
:
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
VALID
:
batch_size
:
64
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/val_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
False
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
ppcls/modeling/architectures/__init__.py
浏览文件 @
9d3f36b7
...
...
@@ -42,8 +42,9 @@ from .res2net_vd import Res2Net50_vd_48w_2s, Res2Net50_vd_26w_4s, Res2Net50_vd_1
from
.hrnet
import
HRNet_W18_C
,
HRNet_W30_C
,
HRNet_W32_C
,
HRNet_W40_C
,
HRNet_W44_C
,
HRNet_W48_C
,
HRNet_W60_C
,
HRNet_W64_C
,
SE_HRNet_W18_C
,
SE_HRNet_W30_C
,
SE_HRNet_W32_C
,
SE_HRNet_W40_C
,
SE_HRNet_W44_C
,
SE_HRNet_W48_C
,
SE_HRNet_W60_C
,
SE_HRNet_W64_C
from
.darts_gs
import
DARTS_GS_6M
,
DARTS_GS_4M
from
.resnet_acnet
import
ResNet18_ACNet
,
ResNet34_ACNet
,
ResNet50_ACNet
,
ResNet101_ACNet
,
ResNet152_ACNet
from
.ghostnet
import
GhostNet_x0_5
,
GhostNet_x1_0
,
GhostNet_x1_3
# distillation model
from
.distillation_models
import
ResNet50_vd_distill_MobileNetV3_large_x1_0
,
ResNeXt101_32x16d_wsl_distill_ResNet50_vd
from
.csp_resnet
import
CSPResNet50_leaky
\ No newline at end of file
from
.csp_resnet
import
CSPResNet50_leaky
ppcls/modeling/architectures/ghostnet.py
0 → 100644
浏览文件 @
9d3f36b7
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
__all__
=
[
"GhostNet"
,
"GhostNet_x0_5"
,
"GhostNet_x1_0"
,
"GhostNet_x1_3"
]
class
GhostNet
():
def
__init__
(
self
,
scale
):
cfgs
=
[
# k, t, c, SE, s
[
3
,
16
,
16
,
0
,
1
],
[
3
,
48
,
24
,
0
,
2
],
[
3
,
72
,
24
,
0
,
1
],
[
5
,
72
,
40
,
1
,
2
],
[
5
,
120
,
40
,
1
,
1
],
[
3
,
240
,
80
,
0
,
2
],
[
3
,
200
,
80
,
0
,
1
],
[
3
,
184
,
80
,
0
,
1
],
[
3
,
184
,
80
,
0
,
1
],
[
3
,
480
,
112
,
1
,
1
],
[
3
,
672
,
112
,
1
,
1
],
[
5
,
672
,
160
,
1
,
2
],
[
5
,
960
,
160
,
0
,
1
],
[
5
,
960
,
160
,
1
,
1
],
[
5
,
960
,
160
,
0
,
1
],
[
5
,
960
,
160
,
1
,
1
]
]
self
.
cfgs
=
cfgs
self
.
scale
=
scale
def
net
(
self
,
input
,
class_dim
=
1000
):
# build first layer:
output_channel
=
int
(
self
.
_make_divisible
(
16
*
self
.
scale
,
4
))
x
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
output_channel
,
filter_size
=
3
,
stride
=
2
,
groups
=
1
,
act
=
"relu"
,
name
=
"conv1"
)
# build inverted residual blocks
idx
=
0
for
k
,
exp_size
,
c
,
use_se
,
s
in
self
.
cfgs
:
output_channel
=
int
(
self
.
_make_divisible
(
c
*
self
.
scale
,
4
))
hidden_channel
=
int
(
self
.
_make_divisible
(
exp_size
*
self
.
scale
,
4
))
x
=
self
.
ghost_bottleneck
(
input
=
x
,
hidden_dim
=
hidden_channel
,
output
=
output_channel
,
kernel_size
=
k
,
stride
=
s
,
use_se
=
use_se
,
name
=
"_ghostbottleneck_"
+
str
(
idx
))
idx
+=
1
# build last several layers
output_channel
=
int
(
self
.
_make_divisible
(
exp_size
*
self
.
scale
,
4
))
x
=
self
.
conv_bn_layer
(
input
=
x
,
num_filters
=
output_channel
,
filter_size
=
1
,
stride
=
1
,
groups
=
1
,
act
=
"relu"
,
name
=
"conv_last"
)
x
=
fluid
.
layers
.
pool2d
(
input
=
x
,
pool_type
=
'avg'
,
global_pooling
=
True
)
output_channel
=
1280
stdv
=
1.0
/
math
.
sqrt
(
x
.
shape
[
1
]
*
1.0
)
out
=
self
.
conv_bn_layer
(
input
=
x
,
num_filters
=
output_channel
,
filter_size
=
1
,
stride
=
1
,
act
=
"relu"
,
name
=
"fc_0"
)
out
=
fluid
.
layers
.
dropout
(
x
=
out
,
dropout_prob
=
0.2
)
stdv
=
1.0
/
math
.
sqrt
(
out
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
out
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
name
=
"fc_1_weights"
,
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
name
=
"fc_1_offset"
))
return
out
def
_make_divisible
(
self
,
v
,
divisor
,
min_value
=
None
):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
# Make sure that round down does not go down by more than 10%.
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
def
conv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
):
x
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
MSRA
(),
name
=
name
+
"_weights"
),
bias_attr
=
False
)
bn_name
=
name
+
"_bn"
x
=
fluid
.
layers
.
batch_norm
(
input
=
x
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
moving_mean_name
=
bn_name
+
"_mean"
,
moving_variance_name
=
name
+
"_variance"
)
return
x
def
se_block
(
self
,
input
,
num_channels
,
reduction_ratio
=
4
,
name
=
None
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_type
=
'avg'
,
global_pooling
=
True
,
use_cudnn
=
False
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
//
reduction_ratio
,
act
=
'relu'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_1_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_1_offset'
))
stdv
=
1.0
/
math
.
sqrt
(
squeeze
.
shape
[
1
]
*
1.0
)
excitation
=
fluid
.
layers
.
fc
(
input
=
squeeze
,
size
=
num_channels
,
act
=
None
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_2_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_2_offset'
))
#excitation = fluid.layers.clip(x=excitation, min=0, max=1)
se_scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
excitation
,
axis
=
0
)
return
se_scale
def
depthwise_conv
(
self
,
input
,
output
,
kernel_size
,
stride
=
1
,
relu
=
False
,
name
=
None
):
return
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
output
,
filter_size
=
kernel_size
,
stride
=
stride
,
groups
=
input
.
shape
[
1
],
act
=
"relu"
if
relu
else
None
,
name
=
name
+
"_depthwise"
)
def
ghost_module
(
self
,
input
,
output
,
kernel_size
=
1
,
ratio
=
2
,
dw_size
=
3
,
stride
=
1
,
relu
=
True
,
name
=
None
):
self
.
output
=
output
init_channels
=
int
(
math
.
ceil
(
output
/
ratio
))
new_channels
=
int
(
init_channels
*
(
ratio
-
1
))
primary_conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
init_channels
,
filter_size
=
kernel_size
,
stride
=
stride
,
groups
=
1
,
act
=
"relu"
if
relu
else
None
,
name
=
name
+
"_primary_conv"
)
cheap_operation
=
self
.
conv_bn_layer
(
input
=
primary_conv
,
num_filters
=
new_channels
,
filter_size
=
dw_size
,
stride
=
1
,
groups
=
init_channels
,
act
=
"relu"
if
relu
else
None
,
name
=
name
+
"_cheap_operation"
)
out
=
fluid
.
layers
.
concat
([
primary_conv
,
cheap_operation
],
axis
=
1
)
return
out
def
ghost_bottleneck
(
self
,
input
,
hidden_dim
,
output
,
kernel_size
,
stride
,
use_se
,
name
=
None
):
inp_channels
=
input
.
shape
[
1
]
x
=
self
.
ghost_module
(
input
=
input
,
output
=
hidden_dim
,
kernel_size
=
1
,
stride
=
1
,
relu
=
True
,
name
=
name
+
"_ghost_module_1"
)
if
stride
==
2
:
x
=
self
.
depthwise_conv
(
input
=
x
,
output
=
hidden_dim
,
kernel_size
=
kernel_size
,
stride
=
stride
,
relu
=
False
,
name
=
name
+
"_depthwise"
)
if
use_se
:
x
=
self
.
se_block
(
input
=
x
,
num_channels
=
hidden_dim
,
name
=
name
+
"_se"
)
x
=
self
.
ghost_module
(
input
=
x
,
output
=
output
,
kernel_size
=
1
,
relu
=
False
,
name
=
name
+
"_ghost_module_2"
)
if
stride
==
1
and
inp_channels
==
output
:
shortcut
=
input
else
:
shortcut
=
self
.
depthwise_conv
(
input
=
input
,
output
=
inp_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
relu
=
False
,
name
=
name
+
"_shortcut_depthwise"
)
shortcut
=
self
.
conv_bn_layer
(
input
=
shortcut
,
num_filters
=
output
,
filter_size
=
1
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
name
+
"_shortcut_conv"
)
return
fluid
.
layers
.
elementwise_add
(
x
=
x
,
y
=
shortcut
,
axis
=-
1
)
def
GhostNet_x0_5
():
model
=
GhostNet
(
scale
=
0.5
)
return
model
def
GhostNet_x1_0
():
model
=
GhostNet
(
scale
=
1.0
)
return
model
def
GhostNet_x1_3
():
model
=
GhostNet
(
scale
=
1.3
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录