未验证 提交 500b35d5 编写于 作者: W WuHaobo 提交者: GitHub

Update README.md

上级 41b22ffc
......@@ -29,7 +29,7 @@
src="./docs/images/models/mobile_arm_top1.png" width="700">
</div>
上图对比了一些最新的面向移动端应用场景的模型,在骁龙855(SD855)上预测一张图像的时间和其准确率,包括MobileNetV1系列、MobileNetV2系列、MobileNetV3系列和ShuffleNetV2系列。图中准确率79%的MV3_large_x1_0_ssld(MV是MobileNet的简称),71.3%的MV3_small_x1_0_ssld、76.74%的MV2_ssld和77.89%的MV1_ssld,是采用PaddleClas提供的SSLD蒸馏方法训练的模型。MV3_large_x1_0_ssld_int8是进一步进行INT8量化的模型。不同模型的简介、FLOPS、Parameters和模型存储大小请参考文档教程中的[**模型库章节**](https://paddleclas.readthedocs.io/zh_CN/latest/models/models_intro.html)
上图对比了一些最新的面向移动端应用场景的模型,在骁龙855(SD855)上预测一张图像的时间和其准确率,包括MobileNetV1系列、MobileNetV2系列、MobileNetV3系列和ShuffleNetV2系列。图中准确率79%的MV3_large_x1_0_ssld(M是MobileNet的简称),71.3%的MV3_small_x1_0_ssld、76.74%的MV2_ssld和77.89%的MV1_ssld,是采用PaddleClas提供的SSLD蒸馏方法训练的模型。MV3_large_x1_0_ssld_int8是进一步进行INT8量化的模型。不同模型的简介、FLOPS、Parameters和模型存储大小请参考文档教程中的[**模型库章节**](https://paddleclas.readthedocs.io/zh_CN/latest/models/models_intro.html)
- TODO
- [ ] EfficientLite、GhostNet、RegNet、ResNeSt的论文指标复现和性能评估
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册