未验证 提交 88386675 编写于 作者: D dyning 提交者: GitHub

Update README.md

上级 855c2fa7
......@@ -6,7 +6,7 @@
PaddleClas的目的是为工业界和学术界提供一个图像分类任务相关的百宝箱,特色如下:
- 模型库:ResNet_vd、MobileNetV3等23种系列的分类网络结构和训练技巧,以及对应的117个分类预训练模型和性能评估
- 高阶使用:高精度的实用知识蒸馏方案(准确率82.39%的ResNet50_vd和78.9%的MobileNetV3)、8种数据增广方法的复现和验证
- 高阶支持:高精度的实用知识蒸馏方案(准确率82.39%的ResNet50_vd和78.9%的MobileNetV3)、8种数据增广方法的复现和验证
- 应用拓展:常见视觉任务的特色方案,包括图像分类领域的迁移学习(百度自研的10万类图像分类预训练模型)和通用目标检测(mAP 47.8%的实用检测方案)等
......@@ -34,7 +34,7 @@ src="docs/images/models/mobile_arm_top1.png" width="700">
- TODO
- [ ] EfficientLite、GhostNet、RegNet论文指标复现和性能评估
## 高阶使用
## 高阶支持
除了提供丰富的分类网络结构和预训练模型,PaddleClas也支持了一系列有助于图像分类任务效果和效率提升的算法或工具。
### 知识蒸馏
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册