Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
7a4b2b1f
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7a4b2b1f
编写于
9月 02, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix layer helper
上级
32dc1c1c
变更
24
显示空白变更内容
内联
并排
Showing
24 changed file
with
399 addition
and
321 deletion
+399
-321
ppcls/modeling/architectures/GhostNet_wqz.py
ppcls/modeling/architectures/GhostNet_wqz.py
+334
-0
ppcls/modeling/architectures/__init__.py
ppcls/modeling/architectures/__init__.py
+3
-1
ppcls/modeling/architectures/densenet.py
ppcls/modeling/architectures/densenet.py
+0
-1
ppcls/modeling/architectures/dpn.py
ppcls/modeling/architectures/dpn.py
+0
-1
ppcls/modeling/architectures/efficientnet.py
ppcls/modeling/architectures/efficientnet.py
+7
-11
ppcls/modeling/architectures/googlenet.py
ppcls/modeling/architectures/googlenet.py
+5
-6
ppcls/modeling/architectures/hrnet.py
ppcls/modeling/architectures/hrnet.py
+1
-3
ppcls/modeling/architectures/mobilenet_v1.py
ppcls/modeling/architectures/mobilenet_v1.py
+0
-1
ppcls/modeling/architectures/mobilenet_v2.py
ppcls/modeling/architectures/mobilenet_v2.py
+0
-1
ppcls/modeling/architectures/mobilenet_v3.py
ppcls/modeling/architectures/mobilenet_v3.py
+0
-1
ppcls/modeling/architectures/res2net.py
ppcls/modeling/architectures/res2net.py
+2
-4
ppcls/modeling/architectures/res2net_vd.py
ppcls/modeling/architectures/res2net_vd.py
+7
-5
ppcls/modeling/architectures/resnet.py
ppcls/modeling/architectures/resnet.py
+4
-9
ppcls/modeling/architectures/resnet_name.py
ppcls/modeling/architectures/resnet_name.py
+0
-213
ppcls/modeling/architectures/resnet_vc.py
ppcls/modeling/architectures/resnet_vc.py
+4
-9
ppcls/modeling/architectures/resnet_vd.py
ppcls/modeling/architectures/resnet_vd.py
+4
-9
ppcls/modeling/architectures/resnext.py
ppcls/modeling/architectures/resnext.py
+2
-5
ppcls/modeling/architectures/resnext_vd.py
ppcls/modeling/architectures/resnext_vd.py
+7
-6
ppcls/modeling/architectures/se_resnet_vd.py
ppcls/modeling/architectures/se_resnet_vd.py
+4
-9
ppcls/modeling/architectures/se_resnext_vd.py
ppcls/modeling/architectures/se_resnext_vd.py
+2
-5
ppcls/modeling/architectures/shufflenet_v2.py
ppcls/modeling/architectures/shufflenet_v2.py
+0
-1
ppcls/modeling/architectures/xception.py
ppcls/modeling/architectures/xception.py
+9
-14
ppcls/modeling/architectures/xception_deeplab.py
ppcls/modeling/architectures/xception_deeplab.py
+3
-5
tools/run.sh
tools/run.sh
+1
-1
未找到文件。
ppcls/modeling/architectures/GhostNet_wqz.py
0 → 100644
浏览文件 @
7a4b2b1f
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.contrib.model_stat
import
summary
__all__
=
[
"GhostNet"
,
"GhostNetV1"
]
class
GhostNet
():
def
__init__
(
self
,
width_mult
):
cfgs
=
[
# k, t, c, SE, s
[
3
,
16
,
16
,
0
,
1
],
[
3
,
48
,
24
,
0
,
2
],
[
3
,
72
,
24
,
0
,
1
],
[
5
,
72
,
40
,
1
,
2
],
[
5
,
120
,
40
,
1
,
1
],
[
3
,
240
,
80
,
0
,
2
],
[
3
,
200
,
80
,
0
,
1
],
[
3
,
184
,
80
,
0
,
1
],
[
3
,
184
,
80
,
0
,
1
],
[
3
,
480
,
112
,
1
,
1
],
[
3
,
672
,
112
,
1
,
1
],
[
5
,
672
,
160
,
1
,
2
],
[
5
,
960
,
160
,
0
,
1
],
[
5
,
960
,
160
,
1
,
1
],
[
5
,
960
,
160
,
0
,
1
],
[
5
,
960
,
160
,
1
,
1
]
]
self
.
cfgs
=
cfgs
self
.
width_mult
=
width_mult
def
_make_divisible
(
self
,
v
,
divisor
,
min_value
=
None
):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
# Make sure that round down does not go down by more than 10%.
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
def
conv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
,
data_format
=
"NCHW"
):
print
(
"conv bn, num_filters: {}, filter_size: {}, stride: {}"
.
format
(
num_filters
,
filter_size
,
stride
))
x
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
MSRA
(),
name
=
name
+
"_weights"
),
bias_attr
=
False
,
name
=
name
+
"_conv_op"
,
data_format
=
data_format
)
x
=
fluid
.
layers
.
batch_norm
(
input
=
x
,
act
=
act
,
name
=
name
+
"_bn"
,
param_attr
=
ParamAttr
(
name
=
name
+
"_bn_scale"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_bn_offset"
),
moving_mean_name
=
name
+
"_bn_mean"
,
moving_variance_name
=
name
+
"_bn_variance"
,
data_layout
=
data_format
)
return
x
def
SElayer
(
self
,
input
,
num_channels
,
reduction_ratio
=
4
,
name
=
None
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
//
reduction_ratio
,
act
=
'relu'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_sqz_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_sqz_offset'
))
stdv
=
1.0
/
math
.
sqrt
(
squeeze
.
shape
[
1
]
*
1.0
)
excitation
=
fluid
.
layers
.
fc
(
input
=
squeeze
,
size
=
num_channels
,
act
=
None
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_exc_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_exc_offset'
))
excitation
=
fluid
.
layers
.
clip
(
x
=
excitation
,
min
=
0
,
max
=
1
,
name
=
name
+
'_clip'
)
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
excitation
,
axis
=
0
)
return
scale
def
depthwise_conv
(
self
,
inp
,
oup
,
kernel_size
,
stride
=
1
,
relu
=
False
,
name
=
None
,
data_format
=
"NCHW"
):
return
self
.
conv_bn_layer
(
input
=
inp
,
num_filters
=
oup
,
filter_size
=
kernel_size
,
stride
=
stride
,
groups
=
inp
.
shape
[
1
]
if
data_format
==
"NCHW"
else
inp
.
shape
[
-
1
],
act
=
"relu"
if
relu
else
None
,
name
=
name
+
"_dw"
,
data_format
=
data_format
)
def
GhostModule
(
self
,
inp
,
oup
,
kernel_size
=
1
,
ratio
=
2
,
dw_size
=
3
,
stride
=
1
,
relu
=
True
,
name
=
None
,
data_format
=
"NCHW"
):
self
.
oup
=
oup
init_channels
=
math
.
ceil
(
oup
/
ratio
)
new_channels
=
init_channels
*
(
ratio
-
1
)
primary_conv
=
self
.
conv_bn_layer
(
input
=
inp
,
num_filters
=
init_channels
,
filter_size
=
kernel_size
,
stride
=
stride
,
groups
=
1
,
act
=
"relu"
if
relu
else
None
,
name
=
name
+
"_primary_conv"
,
data_format
=
"NCHW"
)
cheap_operation
=
self
.
conv_bn_layer
(
input
=
primary_conv
,
num_filters
=
new_channels
,
filter_size
=
dw_size
,
stride
=
1
,
groups
=
init_channels
,
act
=
"relu"
if
relu
else
None
,
name
=
name
+
"_cheap_operation"
,
data_format
=
data_format
)
out
=
fluid
.
layers
.
concat
(
[
primary_conv
,
cheap_operation
],
axis
=
1
,
name
=
name
+
"_concat"
)
return
out
[:,
:
self
.
oup
,
:,
:]
def
GhostBottleneck
(
self
,
inp
,
hidden_dim
,
oup
,
kernel_size
,
stride
,
use_se
,
name
=
None
,
data_format
=
"NCHW"
):
inp_channels
=
inp
.
shape
[
1
]
x
=
self
.
GhostModule
(
inp
=
inp
,
oup
=
hidden_dim
,
kernel_size
=
1
,
stride
=
1
,
relu
=
True
,
name
=
name
+
"GhostBottle_1"
,
data_format
=
"NCHW"
)
if
stride
==
2
:
x
=
self
.
depthwise_conv
(
inp
=
x
,
oup
=
hidden_dim
,
kernel_size
=
kernel_size
,
stride
=
stride
,
relu
=
False
,
name
=
name
+
"_dw2"
,
data_format
=
"NCHW"
)
if
use_se
:
x
=
self
.
SElayer
(
input
=
x
,
num_channels
=
hidden_dim
,
name
=
name
+
"SElayer"
)
x
=
self
.
GhostModule
(
inp
=
x
,
oup
=
oup
,
kernel_size
=
1
,
relu
=
False
,
name
=
name
+
"GhostModule_2"
)
if
stride
==
1
and
inp_channels
==
oup
:
shortcut
=
inp
else
:
shortcut
=
self
.
depthwise_conv
(
inp
=
inp
,
oup
=
inp_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
relu
=
False
,
name
=
name
+
"shortcut_depthwise_conv"
,
data_format
=
"NCHW"
)
shortcut
=
self
.
conv_bn_layer
(
input
=
shortcut
,
num_filters
=
oup
,
filter_size
=
1
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
name
+
"shortcut_conv_bn"
,
data_format
=
"NCHW"
)
return
fluid
.
layers
.
elementwise_add
(
x
=
x
,
y
=
shortcut
,
axis
=-
1
,
act
=
None
,
name
=
name
+
"elementwise_add"
)
def
net
(
self
,
input
,
class_dim
=
1000
):
# build first layer:
output_channel
=
self
.
_make_divisible
(
16
*
self
.
width_mult
,
4
)
x
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
output_channel
,
filter_size
=
3
,
stride
=
2
,
groups
=
1
,
act
=
"relu"
,
name
=
"firstlayer"
,
data_format
=
"NCHW"
)
input_channel
=
output_channel
# build inverted residual blocks
idx
=
0
for
k
,
exp_size
,
c
,
use_se
,
s
in
self
.
cfgs
:
output_channel
=
self
.
_make_divisible
(
c
*
self
.
width_mult
,
4
)
hidden_channel
=
self
.
_make_divisible
(
exp_size
*
self
.
width_mult
,
4
)
x
=
self
.
GhostBottleneck
(
inp
=
x
,
hidden_dim
=
hidden_channel
,
oup
=
output_channel
,
kernel_size
=
k
,
stride
=
s
,
use_se
=
use_se
,
name
=
"GhostBottle_"
+
str
(
idx
),
data_format
=
"NCHW"
)
input_channel
=
output_channel
idx
+=
1
# build last several layers
output_channel
=
self
.
_make_divisible
(
exp_size
*
self
.
width_mult
,
4
)
x
=
self
.
conv_bn_layer
(
input
=
x
,
num_filters
=
output_channel
,
filter_size
=
1
,
stride
=
1
,
groups
=
1
,
act
=
"relu"
,
name
=
"lastlayer"
,
data_format
=
"NCHW"
)
x
=
fluid
.
layers
.
pool2d
(
input
=
x
,
pool_type
=
'avg'
,
global_pooling
=
True
,
data_format
=
"NCHW"
)
input_channel
=
output_channel
output_channel
=
1280
stdv
=
1.0
/
math
.
sqrt
(
x
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
conv2d
(
input
=
x
,
num_filters
=
output_channel
,
filter_size
=
1
,
groups
=
1
,
param_attr
=
ParamAttr
(
name
=
"fc_0_w"
,
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
False
,
name
=
"fc_0"
)
out
=
fluid
.
layers
.
batch_norm
(
input
=
out
,
act
=
"relu"
,
name
=
"fc_0_bn"
,
param_attr
=
ParamAttr
(
name
=
"fc_0_bn_scale"
),
bias_attr
=
ParamAttr
(
name
=
"fc_0_bn_offset"
),
moving_mean_name
=
"fc_0_bn_mean"
,
moving_variance_name
=
"fc_0_bn_variance"
,
data_layout
=
"NCHW"
)
out
=
fluid
.
layers
.
dropout
(
x
=
out
,
dropout_prob
=
0.2
)
stdv
=
1.0
/
math
.
sqrt
(
out
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
out
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
name
=
"fc_1_w"
,
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
name
=
"fc_1_bias"
))
return
out
def
GhostNet_0_5
():
model
=
GhostNet
(
width_mult
=
0.5
)
return
model
def
GhostNet_1_0
():
model
=
GhostNet
(
width_mult
=
1.0
)
return
model
def
GhostNet_1_3
():
model
=
GhostNet
(
width_mult
=
1.3
)
return
model
if
__name__
==
"__main__"
:
# from calc_flops import summary
image
=
fluid
.
data
(
name
=
'image'
,
shape
=
[
-
1
,
3
,
224
,
224
],
dtype
=
'float32'
)
model
=
GhostNet_1_3
()
out
=
model
.
net
(
input
=
image
,
class_dim
=
1000
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
total_flops_params
,
is_quantize
=
summary
(
test_program
)
ppcls/modeling/architectures/__init__.py
浏览文件 @
7a4b2b1f
...
...
@@ -24,6 +24,8 @@ from .se_resnext_vd import SE_ResNeXt50_vd_32x4d, SE_ResNeXt50_vd_32x4d, SENet15
from
.dpn
import
DPN68
from
.densenet
import
DenseNet121
from
.hrnet
import
HRNet_W18_C
from
.efficientnet
import
EfficientNetB0
from
.googlenet
import
GoogLeNet
from
.mobilenet_v1
import
MobileNetV1_x0_25
,
MobileNetV1_x0_5
,
MobileNetV1_x0_75
,
MobileNetV1
from
.mobilenet_v2
import
MobileNetV2_x0_25
,
MobileNetV2_x0_5
,
MobileNetV2_x0_75
,
MobileNetV2
,
MobileNetV2_x1_5
,
MobileNetV2_x2_0
from
.mobilenet_v3
import
MobileNetV3_small_x0_35
,
MobileNetV3_small_x0_5
,
MobileNetV3_small_x0_75
,
MobileNetV3_small_x1_0
,
MobileNetV3_small_x1_25
,
MobileNetV3_large_x0_35
,
MobileNetV3_large_x0_5
,
MobileNetV3_large_x0_75
,
MobileNetV3_large_x1_0
,
MobileNetV3_large_x1_25
...
...
ppcls/modeling/architectures/densenet.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
ppcls/modeling/architectures/dpn.py
浏览文件 @
7a4b2b1f
...
...
@@ -21,7 +21,6 @@ import sys
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
...
...
ppcls/modeling/architectures/efficientnet.py
浏览文件 @
7a4b2b1f
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
import
collections
...
...
@@ -491,6 +490,7 @@ class SEBlock(fluid.dygraph.Layer):
num_squeezed_channels
,
oup
,
1
,
act
=
"sigmoid"
,
use_bias
=
True
,
padding_type
=
padding_type
,
name
=
name
+
"_se_expand"
)
...
...
@@ -499,8 +499,6 @@ class SEBlock(fluid.dygraph.Layer):
x
=
self
.
_pool
(
inputs
)
x
=
self
.
_conv1
(
x
)
x
=
self
.
_conv2
(
x
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'sigmoid'
)
x
=
layer_helper
.
append_activation
(
x
)
return
fluid
.
layers
.
elementwise_mul
(
inputs
,
x
)
...
...
@@ -565,12 +563,11 @@ class MbConvBlock(fluid.dygraph.Layer):
def
forward
(
self
,
inputs
):
x
=
inputs
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'swish'
)
if
self
.
expand_ratio
!=
1
:
x
=
self
.
_ecn
(
x
)
x
=
layer_helper
.
append_activation
(
x
)
x
=
fluid
.
layers
.
swish
(
x
)
x
=
self
.
_dcn
(
x
)
x
=
layer_helper
.
append_activation
(
x
)
x
=
fluid
.
layers
.
swish
(
x
)
if
self
.
has_se
:
x
=
self
.
_se
(
x
)
x
=
self
.
_pcn
(
x
)
...
...
@@ -697,8 +694,7 @@ class ExtractFeatures(fluid.dygraph.Layer):
def
forward
(
self
,
inputs
):
x
=
self
.
_conv_stem
(
inputs
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'swish'
)
x
=
layer_helper
.
append_activation
(
x
)
x
=
fluid
.
layers
.
swish
(
x
)
for
_mc_block
in
self
.
conv_seq
:
x
=
_mc_block
(
x
)
return
x
...
...
ppcls/modeling/architectures/googlenet.py
浏览文件 @
7a4b2b1f
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
__all__
=
[
'GoogLeNet_DY'
]
__all__
=
[
'GoogLeNet'
]
def
xavier
(
channels
,
filter_size
,
name
):
stdv
=
(
3.0
/
(
filter_size
**
2
*
channels
))
**
0.5
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
"_weights"
)
return
param_attr
...
...
@@ -90,8 +89,8 @@ class Inception(fluid.dygraph.Layer):
convprj
=
self
.
_convprj
(
pool
)
cat
=
fluid
.
layers
.
concat
([
conv1
,
conv3
,
conv5
,
convprj
],
axis
=
1
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
return
layer_helper
.
append_activation
(
cat
)
cat
=
fluid
.
layers
.
relu
(
cat
)
return
cat
class
GoogleNetDY
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/hrnet.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
...
...
@@ -495,8 +494,7 @@ class FuseLayers(fluid.dygraph.Layer):
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
residual
=
layer_helper
.
append_activation
(
residual
)
residual
=
fluid
.
layers
.
relu
(
residual
)
outs
.
append
(
residual
)
return
outs
...
...
ppcls/modeling/architectures/mobilenet_v1.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle.fluid.initializer
import
MSRA
import
math
...
...
ppcls/modeling/architectures/mobilenet_v2.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
ppcls/modeling/architectures/mobilenet_v3.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
ppcls/modeling/architectures/res2net.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -143,9 +142,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
Res2Net
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/res2net_vd.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -47,7 +46,11 @@ class ConvBNLayer(fluid.dygraph.Layer):
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
Pool2D
(
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
,
ceil_mode
=
True
)
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
...
...
@@ -150,9 +153,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
Res2Net_vd
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/resnet.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -118,10 +117,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
"relu"
)
return
y
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -165,10 +162,8 @@ class BasicBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
"relu"
)
return
y
class
ResNet
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/resnet_name.py
已删除
100644 → 0
浏览文件 @
32dc1c1c
import
numpy
as
np
import
argparse
import
ast
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid
import
framework
import
math
import
sys
import
time
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
,
name
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
self
.
_num_channels_out
=
num_filters
*
4
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
class
ResNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
1000
):
super
(
ResNet
,
self
).
__init__
()
self
.
layers
=
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1"
)
self
.
pool2d_max
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
layers
in
[
101
,
152
]
and
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
name
=
conv_name
))
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
pool2d_avg_output
=
num_filters
[
len
(
num_filters
)
-
1
]
*
4
*
1
*
1
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_output
,
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_0.w_0"
),
bias_attr
=
ParamAttr
(
name
=
"fc_0.b_0"
))
def
forward
(
self
,
inputs
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_output
])
y
=
self
.
out
(
y
)
return
y
def
ResNet50
(
**
args
):
model
=
ResNet
(
layers
=
50
,
**
args
)
return
model
def
ResNet101
(
**
args
):
model
=
ResNet
(
layers
=
101
,
**
args
)
return
model
def
ResNet152
(
**
args
):
model
=
ResNet
(
layers
=
152
,
**
args
)
return
model
if
__name__
==
"__main__"
:
import
numpy
as
np
place
=
fluid
.
CPUPlace
()
with
fluid
.
dygraph
.
guard
(
place
):
model
=
ResNet50
()
img
=
np
.
random
.
uniform
(
0
,
255
,
[
1
,
3
,
224
,
224
]).
astype
(
'float32'
)
img
=
fluid
.
dygraph
.
to_variable
(
img
)
res
=
model
(
img
)
print
(
res
.
shape
)
ppcls/modeling/architectures/resnet_vc.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -120,10 +119,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -167,10 +164,8 @@ class BasicBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
return
y
class
ResNet_vc
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/resnet_vd.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -130,10 +129,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -179,10 +176,8 @@ class BasicBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
return
y
class
ResNet_vd
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/resnext.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -122,10 +121,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
ResNeXt
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/resnext_vd.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -46,7 +45,11 @@ class ConvBNLayer(fluid.dygraph.Layer):
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
Pool2D
(
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
,
ceil_mode
=
True
)
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
...
...
@@ -131,10 +134,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
ResNeXt
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/se_resnet_vd.py
浏览文件 @
7a4b2b1f
...
...
@@ -19,7 +19,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -137,10 +136,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
return
y
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -194,10 +191,8 @@ class BasicBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
return
y
class
SELayer
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/se_resnext_vd.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
...
...
@@ -131,10 +130,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
return
y
class
SELayer
(
fluid
.
dygraph
.
Layer
):
...
...
ppcls/modeling/architectures/shufflenet_v2.py
浏览文件 @
7a4b2b1f
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle.fluid.initializer
import
MSRA
import
math
...
...
ppcls/modeling/architectures/xception.py
浏览文件 @
7a4b2b1f
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
...
...
@@ -99,11 +98,10 @@ class EntryFlowBottleneckBlock(fluid.dygraph.Layer):
def
forward
(
self
,
inputs
):
conv0
=
inputs
short
=
self
.
_short
(
inputs
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
if
self
.
relu_first
:
conv0
=
layer_helper
.
append_activation
(
conv0
)
conv0
=
fluid
.
layers
.
relu
(
conv0
)
conv1
=
self
.
_conv1
(
conv0
)
conv2
=
layer_helper
.
append_activation
(
conv1
)
conv2
=
fluid
.
layers
.
relu
(
conv1
)
conv2
=
self
.
_conv2
(
conv2
)
pool
=
self
.
_pool
(
conv2
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
pool
)
...
...
@@ -177,12 +175,11 @@ class MiddleFlowBottleneckBlock(fluid.dygraph.Layer):
name
=
name
+
"_branch2c_weights"
)
def
forward
(
self
,
inputs
):
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
conv0
=
layer_helper
.
append_activation
(
inputs
)
conv0
=
fluid
.
layers
.
relu
(
inputs
)
conv0
=
self
.
_conv_0
(
conv0
)
conv1
=
layer_helper
.
append_activation
(
conv0
)
conv1
=
fluid
.
layers
.
relu
(
conv0
)
conv1
=
self
.
_conv_1
(
conv1
)
conv2
=
layer_helper
.
append_activation
(
conv1
)
conv2
=
fluid
.
layers
.
relu
(
conv1
)
conv2
=
self
.
_conv_2
(
conv2
)
return
fluid
.
layers
.
elementwise_add
(
x
=
inputs
,
y
=
conv2
)
...
...
@@ -276,10 +273,9 @@ class ExitFlowBottleneckBlock(fluid.dygraph.Layer):
def
forward
(
self
,
inputs
):
short
=
self
.
_short
(
inputs
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
conv0
=
layer_helper
.
append_activation
(
inputs
)
conv0
=
fluid
.
layers
.
relu
(
inputs
)
conv1
=
self
.
_conv_1
(
conv0
)
conv2
=
layer_helper
.
append_activation
(
conv1
)
conv2
=
fluid
.
layers
.
relu
(
conv1
)
conv2
=
self
.
_conv_2
(
conv2
)
pool
=
self
.
_pool
(
conv2
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
pool
)
...
...
@@ -306,12 +302,11 @@ class ExitFlow(fluid.dygraph.Layer):
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
def
forward
(
self
,
inputs
):
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
"relu"
)
conv0
=
self
.
_conv_0
(
inputs
)
conv1
=
self
.
_conv_1
(
conv0
)
conv1
=
layer_helper
.
append_activation
(
conv1
)
conv1
=
fluid
.
layers
.
relu
(
conv1
)
conv2
=
self
.
_conv_2
(
conv1
)
conv2
=
layer_helper
.
append_activation
(
conv2
)
conv2
=
fluid
.
layers
.
relu
(
conv2
)
pool
=
self
.
_pool
(
conv2
)
pool
=
fluid
.
layers
.
reshape
(
pool
,
[
0
,
-
1
])
out
=
self
.
_out
(
pool
)
...
...
ppcls/modeling/architectures/xception_deeplab.py
浏览文件 @
7a4b2b1f
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
__all__
=
[
"Xception41_deeplab"
,
"Xception65_deeplab"
,
"Xception71_deeplab"
]
...
...
@@ -226,13 +225,12 @@ class Xception_Block(fluid.dygraph.Layer):
name
=
name
+
"/shortcut"
)
def
forward
(
self
,
inputs
):
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
if
not
self
.
activation_fn_in_separable_conv
:
x
=
layer_helper
.
append_activation
(
inputs
)
x
=
fluid
.
layers
.
relu
(
inputs
)
x
=
self
.
_conv1
(
x
)
x
=
layer_helper
.
append_activation
(
x
)
x
=
fluid
.
layers
.
relu
(
x
)
x
=
self
.
_conv2
(
x
)
x
=
layer_helper
.
append_activation
(
x
)
x
=
fluid
.
layers
.
relu
(
x
)
x
=
self
.
_conv3
(
x
)
else
:
x
=
self
.
_conv1
(
inputs
)
...
...
tools/run.sh
浏览文件 @
7a4b2b1f
...
...
@@ -5,5 +5,5 @@ export PYTHONPATH=$PWD:$PYTHONPATH
python
-m
paddle.distributed.launch
\
--selected_gpus
=
"0,1,2,3"
\
tools/train.py
\
-c
./configs/ResNet/ResNet50
_vd
.yaml
\
-c
./configs/ResNet/ResNet50.yaml
\
-o
print_interval
=
10
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录