Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
74fa0cc2
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
74fa0cc2
编写于
2月 17, 2023
作者:
T
tianyi1997
提交者:
HydrogenSulfate
2月 28, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Modify docstring
上级
fad8563e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
14 addition
and
14 deletion
+14
-14
ppcls/arch/gears/metabnneck.py
ppcls/arch/gears/metabnneck.py
+3
-3
ppcls/optimizer/learning_rate.py
ppcls/optimizer/learning_rate.py
+11
-11
未找到文件。
ppcls/arch/gears/metabnneck.py
浏览文件 @
74fa0cc2
...
...
@@ -99,9 +99,9 @@ class MetaBNNeck(nn.Layer):
def
setup_opt
(
self
,
opt
):
"""
enable_inside_update: enable inside updating for `gate` in MetaBIN
lr_gate: learning rate of `gate` during meta-train phase
bn_mode: control the running stats & updating of BN
Arg:
opt (dict): Optional setting to change the behavior of MetaBIN during training.
It includes three settings which are `enable_inside_update`, `lr_gate` and `bn_mode`.
"""
self
.
check_opt
(
opt
)
self
.
opt
=
copy
.
deepcopy
(
opt
)
...
...
ppcls/optimizer/learning_rate.py
浏览文件 @
74fa0cc2
...
...
@@ -257,31 +257,31 @@ class Cyclic(LRBase):
"""Cyclic learning rate decay
Args:
epochs (int): Total epoch(s)
step_each_epoch (int): Number of iterations within an epoch
epochs (int): Total epoch(s)
.
step_each_epoch (int): Number of iterations within an epoch
.
base_learning_rate (float): Initial learning rate, which is the lower boundary in the cycle. The paper recommends
that set the base_learning_rate to 1/3 or 1/4 of max_learning_rate.
max_learning_rate (float): Maximum learning rate in the cycle. It defines the cycle amplitude as above.
Since there is some scaling operation during process of learning rate adjustment,
max_learning_rate may not actually be reached.
warmup_epoch (int): Number of warmup epoch(s)
warmup_start_lr (float): Start learning rate within warmup
warmup_epoch (int): Number of warmup epoch(s)
.
warmup_start_lr (float): Start learning rate within warmup
.
step_size_up (int): Number of training steps, which is used to increase learning rate in a cycle.
The step size of one cycle will be defined by step_size_up + step_size_down. According to the paper, step
size should be set as at least 3 or 4 times steps in one epoch.
step_size_down (int, optional): Number of training steps, which is used to decrease learning rate in a cycle.
If not specified, it's value will initialize to `` step_size_up `` . Default: None
If not specified, it's value will initialize to `` step_size_up `` . Default: None
.
mode (str, optional): One of 'triangular', 'triangular2' or 'exp_range'.
If scale_fn is specified, this argument will be ignored. Default: 'triangular'
exp_gamma (float): Constant in 'exp_range' scaling function: exp_gamma**iterations. Used only when mode = 'exp_range'. Default: 1.0
If scale_fn is specified, this argument will be ignored. Default: 'triangular'
.
exp_gamma (float): Constant in 'exp_range' scaling function: exp_gamma**iterations. Used only when mode = 'exp_range'. Default: 1.0
.
scale_fn (function, optional): A custom scaling function, which is used to replace three build-in methods.
It should only have one argument. For all x >= 0, 0 <= scale_fn(x) <= 1.
If specified, then 'mode' will be ignored. Default: None
If specified, then 'mode' will be ignored. Default: None
.
scale_mode (str, optional): One of 'cycle' or 'iterations'. Defines whether scale_fn is evaluated on cycle
number or cycle iterations (total iterations since start of training). Default: 'cycle'
number or cycle iterations (total iterations since start of training). Default: 'cycle'
.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
by_epoch (bool): Learning rate decays by epoch when by_epoch is True, else by iter
verbose: (bool, optional): If True, prints a message to stdout for each update. Defaults to False
by_epoch (bool): Learning rate decays by epoch when by_epoch is True, else by iter
.
verbose: (bool, optional): If True, prints a message to stdout for each update. Defaults to False
.
"""
def
__init__
(
self
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录