未验证 提交 525b5e1a 编写于 作者: H huangxu96 提交者: GitHub

Support fp16 training for ResNeXt101_32x4d (#653)

上级 8a469799
mode: 'train'
ARCHITECTURE:
name: 'ResNeXt101_32x4d'
pretrained_model: ""
model_save_dir: "./output/"
classes_num: 1000
total_images: 1281167
save_interval: 1
validate: True
valid_interval: 1
epochs: 120
topk: 5
image_shape: [4, 224, 224]
use_dali: True
use_gpu: True
data_format: "NCHW"
image_channel: &image_channel 4
image_shape: [*image_channel, 224, 224]
use_mix: False
ls_epsilon: -1
# mixed precision training
AMP:
scale_loss: 128.0
use_dynamic_loss_scaling: True
use_pure_fp16: &use_pure_fp16 True
LEARNING_RATE:
function: 'Piecewise'
params:
lr: 0.1
decay_epochs: [30, 60, 90]
gamma: 0.1
OPTIMIZER:
function: 'Momentum'
params:
momentum: 0.9
multi_precision: *use_pure_fp16
regularizer:
function: 'L2'
factor: 0.000100
TRAIN:
batch_size: 256
num_workers: 4
file_list: "./dataset/ILSVRC2012/train_list.txt"
data_dir: "./dataset/ILSVRC2012/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
output_fp16: *use_pure_fp16
channel_num: *image_channel
- ToCHWImage:
VALID:
batch_size: 64
num_workers: 4
file_list: "./dataset/ILSVRC2012/val_list.txt"
data_dir: "./dataset/ILSVRC2012/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
...@@ -41,9 +41,9 @@ class ConvBNLayer(nn.Layer): ...@@ -41,9 +41,9 @@ class ConvBNLayer(nn.Layer):
stride=1, stride=1,
groups=1, groups=1,
act=None, act=None,
name=None): name=None,
data_format="NCHW"):
super(ConvBNLayer, self).__init__() super(ConvBNLayer, self).__init__()
self._conv = Conv2D( self._conv = Conv2D(
in_channels=num_channels, in_channels=num_channels,
out_channels=num_filters, out_channels=num_filters,
...@@ -52,7 +52,8 @@ class ConvBNLayer(nn.Layer): ...@@ -52,7 +52,8 @@ class ConvBNLayer(nn.Layer):
padding=(filter_size - 1) // 2, padding=(filter_size - 1) // 2,
groups=groups, groups=groups,
weight_attr=ParamAttr(name=name + "_weights"), weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False) bias_attr=False,
data_format=data_format)
if name == "conv1": if name == "conv1":
bn_name = "bn_" + name bn_name = "bn_" + name
else: else:
...@@ -63,7 +64,8 @@ class ConvBNLayer(nn.Layer): ...@@ -63,7 +64,8 @@ class ConvBNLayer(nn.Layer):
param_attr=ParamAttr(name=bn_name + '_scale'), param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'), bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean', moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance') moving_variance_name=bn_name + '_variance',
data_layout=data_format)
def forward(self, inputs): def forward(self, inputs):
y = self._conv(inputs) y = self._conv(inputs)
...@@ -78,15 +80,16 @@ class BottleneckBlock(nn.Layer): ...@@ -78,15 +80,16 @@ class BottleneckBlock(nn.Layer):
stride, stride,
cardinality, cardinality,
shortcut=True, shortcut=True,
name=None): name=None,
data_format="NCHW"):
super(BottleneckBlock, self).__init__() super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer( self.conv0 = ConvBNLayer(
num_channels=num_channels, num_channels=num_channels,
num_filters=num_filters, num_filters=num_filters,
filter_size=1, filter_size=1,
act='relu', act='relu',
name=name + "_branch2a") name=name + "_branch2a",
data_format=data_format)
self.conv1 = ConvBNLayer( self.conv1 = ConvBNLayer(
num_channels=num_filters, num_channels=num_filters,
num_filters=num_filters, num_filters=num_filters,
...@@ -94,13 +97,15 @@ class BottleneckBlock(nn.Layer): ...@@ -94,13 +97,15 @@ class BottleneckBlock(nn.Layer):
groups=cardinality, groups=cardinality,
stride=stride, stride=stride,
act='relu', act='relu',
name=name + "_branch2b") name=name + "_branch2b",
data_format=data_format)
self.conv2 = ConvBNLayer( self.conv2 = ConvBNLayer(
num_channels=num_filters, num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters, num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1, filter_size=1,
act=None, act=None,
name=name + "_branch2c") name=name + "_branch2c",
data_format=data_format)
if not shortcut: if not shortcut:
self.short = ConvBNLayer( self.short = ConvBNLayer(
...@@ -109,7 +114,8 @@ class BottleneckBlock(nn.Layer): ...@@ -109,7 +114,8 @@ class BottleneckBlock(nn.Layer):
if cardinality == 32 else num_filters, if cardinality == 32 else num_filters,
filter_size=1, filter_size=1,
stride=stride, stride=stride,
name=name + "_branch1") name=name + "_branch1",
data_format=data_format)
self.shortcut = shortcut self.shortcut = shortcut
...@@ -129,10 +135,12 @@ class BottleneckBlock(nn.Layer): ...@@ -129,10 +135,12 @@ class BottleneckBlock(nn.Layer):
class ResNeXt(nn.Layer): class ResNeXt(nn.Layer):
def __init__(self, layers=50, class_dim=1000, cardinality=32): def __init__(self, layers=50, class_dim=1000, cardinality=32, input_image_channel=3, data_format="NCHW"):
super(ResNeXt, self).__init__() super(ResNeXt, self).__init__()
self.layers = layers self.layers = layers
self.data_format = data_format
self.input_image_channel = input_image_channel
self.cardinality = cardinality self.cardinality = cardinality
supported_layers = [50, 101, 152] supported_layers = [50, 101, 152]
assert layers in supported_layers, \ assert layers in supported_layers, \
...@@ -153,13 +161,14 @@ class ResNeXt(nn.Layer): ...@@ -153,13 +161,14 @@ class ResNeXt(nn.Layer):
1024] if cardinality == 32 else [256, 512, 1024, 2048] 1024] if cardinality == 32 else [256, 512, 1024, 2048]
self.conv = ConvBNLayer( self.conv = ConvBNLayer(
num_channels=3, num_channels=self.input_image_channel,
num_filters=64, num_filters=64,
filter_size=7, filter_size=7,
stride=2, stride=2,
act='relu', act='relu',
name="res_conv1") name="res_conv1",
self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1) data_format=self.data_format)
self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1, data_format=self.data_format)
self.block_list = [] self.block_list = []
for block in range(len(depth)): for block in range(len(depth)):
...@@ -181,11 +190,12 @@ class ResNeXt(nn.Layer): ...@@ -181,11 +190,12 @@ class ResNeXt(nn.Layer):
stride=2 if i == 0 and block != 0 else 1, stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality, cardinality=self.cardinality,
shortcut=shortcut, shortcut=shortcut,
name=conv_name)) name=conv_name,
data_format=self.data_format))
self.block_list.append(bottleneck_block) self.block_list.append(bottleneck_block)
shortcut = True shortcut = True
self.pool2d_avg = AdaptiveAvgPool2D(1) self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format)
self.pool2d_avg_channels = num_channels[-1] * 2 self.pool2d_avg_channels = num_channels[-1] * 2
...@@ -199,14 +209,18 @@ class ResNeXt(nn.Layer): ...@@ -199,14 +209,18 @@ class ResNeXt(nn.Layer):
bias_attr=ParamAttr(name="fc_offset")) bias_attr=ParamAttr(name="fc_offset"))
def forward(self, inputs): def forward(self, inputs):
y = self.conv(inputs) with paddle.static.amp.fp16_guard():
y = self.pool2d_max(y) if self.data_format == "NHWC":
for block in self.block_list: inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1])
y = block(y) inputs.stop_gradient = True
y = self.pool2d_avg(y) y = self.conv(inputs)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels]) y = self.pool2d_max(y)
y = self.out(y) for block in self.block_list:
return y y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def ResNeXt50_32x4d(**args): def ResNeXt50_32x4d(**args):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册