diff --git a/ppcls/arch/backbone/legendary_models/hrnet.py b/ppcls/arch/backbone/legendary_models/hrnet.py index da03feab1ecc64431eb3f5269db1589f72668951..bacad7a54852a9dccc105feb2ed011cf015428a5 100644 --- a/ppcls/arch/backbone/legendary_models/hrnet.py +++ b/ppcls/arch/backbone/legendary_models/hrnet.py @@ -114,8 +114,7 @@ class TransitionLayer(TheseusLayer): ConvBNLayer( num_channels=in_channels[i], num_filters=out_channels[i], - filter_size=3, - name=name + '_layer_' + str(i + 1))) + filter_size=3)) else: residual = self.add_sublayer( "transition_{}_layer_{}".format(name, i + 1), @@ -123,8 +122,7 @@ class TransitionLayer(TheseusLayer): num_channels=in_channels[-1], num_filters=out_channels[i], filter_size=3, - stride=2, - name=name + '_layer_' + str(i + 1))) + stride=2)) self.conv_bn_func_list.append(residual) def forward(self, x, res_dict=None): @@ -193,29 +191,25 @@ class BottleneckBlock(TheseusLayer): num_channels=num_channels, num_filters=num_filters, filter_size=1, - act="relu", - name=name + "_conv1", ) + act="relu") self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=stride, - act="relu", - name=name + "_conv2") + act="relu") self.conv3 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 4, filter_size=1, - act=None, - name=name + "_conv3") + act=None) if self.downsample: self.conv_down = ConvBNLayer( num_channels=num_channels, num_filters=num_filters * 4, filter_size=1, - act=None, - name=name + "_downsample") + act=None) if self.has_se: self.se = SELayer( @@ -259,23 +253,20 @@ class BasicBlock(TheseusLayer): num_filters=num_filters, filter_size=3, stride=stride, - act="relu", - name=name + "_conv1") + act="relu") self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=1, - act=None, - name=name + "_conv2") + act=None) if self.downsample: self.conv_down = ConvBNLayer( num_channels=num_channels, num_filters=num_filters * 4, filter_size=1, - act="relu", - name=name + "_downsample") + act="relu") if self.has_se: self.se = SELayer( @@ -429,9 +420,7 @@ class FuseLayers(TheseusLayer): num_filters=out_channels[i], filter_size=1, stride=1, - act=None, - name=name + '_layer_' + str(i + 1) + '_' + - str(j + 1))) + act=None)) self.residual_func_list.append(residual_func) elif j < i: pre_num_filters = in_channels[j] @@ -445,9 +434,7 @@ class FuseLayers(TheseusLayer): num_filters=out_channels[i], filter_size=3, stride=2, - act=None, - name=name + '_layer_' + str(i + 1) + '_' + - str(j + 1) + '_' + str(k + 1))) + act=None)) pre_num_filters = out_channels[i] else: residual_func = self.add_sublayer( @@ -458,9 +445,7 @@ class FuseLayers(TheseusLayer): num_filters=out_channels[j], filter_size=3, stride=2, - act="relu", - name=name + '_layer_' + str(i + 1) + '_' + - str(j + 1) + '_' + str(k + 1))) + act="relu")) pre_num_filters = out_channels[j] self.residual_func_list.append(residual_func) @@ -544,16 +529,14 @@ class HRNet(TheseusLayer): num_filters=64, filter_size=3, stride=2, - act='relu', - name="layer1_1") + act='relu') self.conv_layer1_2 = ConvBNLayer( num_channels=64, num_filters=64, filter_size=3, stride=2, - act='relu', - name="layer1_2") + act='relu') self.la1 = Layer1(num_channels=64, has_se=has_se, name="layer2") @@ -603,15 +586,13 @@ class HRNet(TheseusLayer): num_channels=num_filters_list[idx] * 4, num_filters=last_num_filters[idx], filter_size=3, - stride=2, - name="cls_head_add" + str(idx + 1)))) + stride=2))) self.conv_last = ConvBNLayer( num_channels=1024, num_filters=2048, filter_size=1, - stride=1, - name="cls_head_last_conv") + stride=1) self.pool2d_avg = AdaptiveAvgPool2D(1)