Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
3c21282d
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3c21282d
编写于
2月 07, 2023
作者:
T
tianyi1997
提交者:
HydrogenSulfate
2月 28, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Create losses for MetaBIN
上级
c3fa6eca
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
202 addition
and
0 deletion
+202
-0
ppcls/loss/__init__.py
ppcls/loss/__init__.py
+5
-0
ppcls/loss/metabinloss.py
ppcls/loss/metabinloss.py
+197
-0
未找到文件。
ppcls/loss/__init__.py
浏览文件 @
3c21282d
...
...
@@ -42,6 +42,11 @@ from .deephashloss import DSHSDLoss
from
.deephashloss
import
LCDSHLoss
from
.deephashloss
import
DCHLoss
from
.metabinloss
import
CELossForMetaBIN
from
.metabinloss
import
TripletLossForMetaBIN
from
.metabinloss
import
InterDomainShuffleLoss
from
.metabinloss
import
IntraDomainScatterLoss
class
CombinedLoss
(
nn
.
Layer
):
def
__init__
(
self
,
config_list
):
...
...
ppcls/loss/metabinloss.py
0 → 100644
浏览文件 @
3c21282d
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# reference: https://arxiv.org/abs/2011.14670
import
copy
import
numpy
as
np
import
paddle
from
paddle
import
nn
from
paddle.nn
import
functional
as
F
from
.dist_loss
import
cosine_similarity
from
.celoss
import
CELoss
from
.triplet
import
TripletLoss
def
euclidean_dist
(
x
,
y
):
m
,
n
=
x
.
shape
[
0
],
y
.
shape
[
0
]
xx
=
paddle
.
pow
(
x
,
2
).
sum
(
1
,
keepdim
=
True
).
expand
([
m
,
n
])
yy
=
paddle
.
pow
(
y
,
2
).
sum
(
1
,
keepdim
=
True
).
expand
([
n
,
m
]).
t
()
dist
=
xx
+
yy
-
2
*
paddle
.
matmul
(
x
,
y
.
t
())
dist
=
dist
.
clip
(
min
=
1e-12
).
sqrt
()
# for numerical stability
return
dist
def
hard_example_mining
(
dist_mat
,
is_pos
,
is_neg
):
"""For each anchor, find the hardest positive and negative sample.
Args:
dist_mat: pairwise distance between samples, shape [N, M]
is_pos: positive index with shape [N, M]
is_neg: negative index with shape [N, M]
Returns:
dist_ap: distance(anchor, positive); shape [N]
dist_an: distance(anchor, negative); shape [N]
"""
assert
len
(
dist_mat
.
shape
)
==
2
dist_ap
=
list
()
for
i
in
range
(
dist_mat
.
shape
[
0
]):
dist_ap
.
append
(
paddle
.
max
(
dist_mat
[
i
][
is_pos
[
i
]]))
dist_ap
=
paddle
.
stack
(
dist_ap
)
dist_an
=
list
()
for
i
in
range
(
dist_mat
.
shape
[
0
]):
dist_an
.
append
(
paddle
.
min
(
dist_mat
[
i
][
is_neg
[
i
]]))
dist_an
=
paddle
.
stack
(
dist_an
)
return
dist_ap
,
dist_an
class
IntraDomainScatterLoss
(
nn
.
Layer
):
"""
IntraDomainScatterLoss
enhance intra-domain diversity and disarrange inter-domain distributions like confusing multiple styles.
reference: https://arxiv.org/abs/2011.14670
"""
def
__init__
(
self
,
normalize_feature
,
feature_from
):
super
(
IntraDomainScatterLoss
,
self
).
__init__
()
self
.
normalize_feature
=
normalize_feature
self
.
feature_from
=
feature_from
def
forward
(
self
,
input
,
batch
):
domains
=
batch
[
"domain"
]
inputs
=
input
[
self
.
feature_from
]
if
self
.
normalize_feature
:
inputs
=
1.
*
inputs
/
(
paddle
.
expand_as
(
paddle
.
norm
(
inputs
,
p
=
2
,
axis
=-
1
,
keepdim
=
True
),
inputs
)
+
1e-12
)
unique_label
=
paddle
.
unique
(
domains
)
features_per_domain
=
list
()
for
i
,
x
in
enumerate
(
unique_label
):
features_per_domain
.
append
(
inputs
[
x
==
domains
])
num_domain
=
len
(
features_per_domain
)
losses
=
[]
for
i
in
range
(
num_domain
):
features_in_same_domain
=
features_per_domain
[
i
]
center
=
paddle
.
mean
(
features_in_same_domain
,
0
)
cos_sim
=
cosine_similarity
(
center
.
unsqueeze
(
0
),
features_in_same_domain
)
losses
.
append
(
paddle
.
mean
(
cos_sim
))
loss
=
paddle
.
mean
(
paddle
.
stack
(
losses
))
return
{
"IntraDomainScatterLoss"
:
loss
}
class
InterDomainShuffleLoss
(
nn
.
Layer
):
"""
InterDomainShuffleLoss
pull the negative sample of the interdomain and push the negative sample of the intra-domain,
so that the inter-domain distributions are shuffled.
reference: https://arxiv.org/abs/2011.14670
"""
def
__init__
(
self
,
normalize_feature
=
True
,
feature_from
=
"features"
):
super
(
InterDomainShuffleLoss
,
self
).
__init__
()
self
.
feature_from
=
feature_from
self
.
normalize_feature
=
normalize_feature
def
forward
(
self
,
input
,
batch
):
target
=
batch
[
"label"
]
domains
=
batch
[
"domain"
]
inputs
=
input
[
self
.
feature_from
]
bs
=
inputs
.
shape
[
0
]
if
self
.
normalize_feature
:
inputs
=
1.
*
inputs
/
(
paddle
.
expand_as
(
paddle
.
norm
(
inputs
,
p
=
2
,
axis
=-
1
,
keepdim
=
True
),
inputs
)
+
1e-12
)
# compute distance
dist_mat
=
euclidean_dist
(
inputs
,
inputs
)
is_same_img
=
np
.
zeros
(
shape
=
[
bs
,
bs
],
dtype
=
bool
)
np
.
fill_diagonal
(
is_same_img
,
True
)
is_same_img
=
paddle
.
to_tensor
(
is_same_img
)
is_diff_instance
=
target
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
])
\
.
not_equal
(
target
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
t
())
is_same_domain
=
domains
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
])
\
.
equal
(
domains
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
t
())
is_diff_domain
=
is_same_domain
==
False
is_pos
=
paddle
.
logical_or
(
is_same_img
,
is_diff_domain
)
is_neg
=
paddle
.
logical_and
(
is_diff_instance
,
is_same_domain
)
dist_ap
,
dist_an
=
hard_example_mining
(
dist_mat
,
is_pos
,
is_neg
)
y
=
paddle
.
ones_like
(
dist_an
)
loss
=
F
.
soft_margin_loss
(
dist_an
-
dist_ap
,
y
)
if
loss
==
float
(
'Inf'
):
loss
=
F
.
margin_ranking_loss
(
dist_an
,
dist_ap
,
y
,
margin
=
0.3
)
return
{
"InterDomainShuffleLoss"
:
loss
}
class
CELossForMetaBIN
(
CELoss
):
def
_labelsmoothing
(
self
,
target
,
class_num
):
if
len
(
target
.
shape
)
==
1
or
target
.
shape
[
-
1
]
!=
class_num
:
one_hot_target
=
F
.
one_hot
(
target
,
class_num
)
else
:
one_hot_target
=
target
# epsilon is different from the one in original CELoss
epsilon
=
class_num
/
(
class_num
-
1
)
*
self
.
epsilon
soft_target
=
F
.
label_smooth
(
one_hot_target
,
epsilon
=
epsilon
)
soft_target
=
paddle
.
reshape
(
soft_target
,
shape
=
[
-
1
,
class_num
])
return
soft_target
def
forward
(
self
,
x
,
batch
):
label
=
batch
[
"label"
]
return
super
().
forward
(
x
,
label
)
class
TripletLossForMetaBIN
(
nn
.
Layer
):
def
__init__
(
self
,
margin
=
1
,
normalize_feature
=
False
,
feature_from
=
"feature"
):
super
(
TripletLossForMetaBIN
,
self
).
__init__
()
self
.
margin
=
margin
self
.
feature_from
=
feature_from
self
.
normalize_feature
=
normalize_feature
def
forward
(
self
,
input
,
batch
):
inputs
=
input
[
self
.
feature_from
]
targets
=
batch
[
"label"
]
bs
=
inputs
.
shape
[
0
]
all_targets
=
targets
if
self
.
normalize_feature
:
inputs
=
1.
*
inputs
/
(
paddle
.
expand_as
(
paddle
.
norm
(
inputs
,
p
=
2
,
axis
=-
1
,
keepdim
=
True
),
inputs
)
+
1e-12
)
dist_mat
=
euclidean_dist
(
inputs
,
inputs
)
is_pos
=
all_targets
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
equal
(
all_targets
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
t
())
is_neg
=
all_targets
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
not_equal
(
all_targets
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
t
())
dist_ap
,
dist_an
=
hard_example_mining
(
dist_mat
,
is_pos
,
is_neg
)
y
=
paddle
.
ones_like
(
dist_an
)
loss
=
F
.
margin_ranking_loss
(
dist_an
,
dist_ap
,
y
,
margin
=
self
.
margin
)
return
{
"TripletLoss"
:
loss
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录