未验证 提交 2381201b 编写于 作者: D dyning 提交者: GitHub

Merge pull request #145 from shippingwang/add_tutorial_en_doc

add tutorial en doc
#Configuration
---
## Introduction
This document introduces the configuration(filed in config/*.yaml) of PaddleClas.
## Filed in config/*.yaml
### Basic
| name | detail | default value | optional value |
|:---:|:---:|:---:|:---:|
| mode | mode | "train" | ["train"," valid"] |
| architecture | model name | "ResNet50_vd" | one of 23 architectures |
| pretrained_model | pretrained model path | "" | Str |
| model_save_dir | model stored path | "" | Str |
| classes_num | class number | 1000 | int |
| total_images | total images | 1281167 | int |
| save_interval | save interval | 1 | int |
| validate | whether to validate when training | TRUE | bool |
| valid_interval | valid interval | 1 | int |
| epochs | epoch | | int |
| topk | K value | 5 | int |
| image_shape | image size | [3,224,224] | list, shape: (3,) |
| use_mix | whether to use mixup | False | ['True', 'False'] |
| ls_epsilon | label_smoothing epsilon value| 0 | float |
### Optimizer & Learning rate
learning rate
| name | detail | default value |Optional value |
|:---:|:---:|:---:|:---:|
| function | decay type | "Linear" | ["Linear", "Cosine", <br> "Piecewise", "CosineWarmup"] |
| params.lr | initial learning rate | 0.1 | float |
| params.decay_epochs | milestone in piecewisedecay | | list |
| params.gamma | gamma in piecewisedecay | 0.1 | float |
| params.warmup_epoch | warmup epoch | 5 | int |
| parmas.steps | decay steps in lineardecay | 100 | int |
| params.end_lr | end lr in lineardecay | 0 | float |
optimizer
| name | detail | default value | optional value |
|:---:|:---:|:---:|:---:|
| function | optimizer name | "Momentum" | ["Momentum", "RmsProp"] |
| params.momentum | momentum value | 0.9 | float |
| regularizer.function | regularizer method name | "L2" | ["L1", "L2"] |
| regularizer.factor | regularizer factor | 0.0001 | float |
### reader
| name | detail |
|:---:|:---:|
| batch_size | batch size |
| num_workers | worker number |
| file_list | train list path |
| data_dir | train dataset path |
| shuffle_seed | seed |
processing
| function name | attribute name | detail |
|:---:|:---:|:---:|
| DecodeImage | to_rgb | decode to RGB |
| | to_np | to numpy |
| | channel_first | Channel first |
| RandCropImage | size | random crop |
| RandFlipImage | | random flip |
| NormalizeImage | scale | normalize image |
| | mean | mean |
| | std | std |
| | order | order |
| ToCHWImage | | to CHW |
| CropImage | size | crop size |
| ResizeImage | resize_short | resize according to short size |
mix preprocessing
| name| detail|
|:---:|:---:|
| MixupOperator.alpha | alpha value in mixup|
# Data
---
## 1. Introducation
This document introduces the preparation of ImageNet1k and flowers102
## 2. Dataset
Dataset | train dataset size | valid dataset size | category |
:------:|:---------------:|:---------------------:|:--------:|
[flowers102](https://www.robots.ox.ac.uk/~vgg/data/flowers/102/)|1k | 6k | 102 |
[ImageNet1k](http://www.image-net.org/challenges/LSVRC/2012/)|1.2M| 50k | 1000 |
* Data format
Please follow the steps mentioned below to organize data, include train_list.txt and val_list.txt
```shell
# delimiter: "space"
ILSVRC2012_val_00000001.JPEG 65
...
```
### ImageNet1k
After downloading data, please organize the data dir as below
```bash
PaddleClas/dataset/imagenet/
|_ train/
| |_ n01440764
| | |_ n01440764_10026.JPEG
| | |_ ...
| |_ ...
| |
| |_ n15075141
| |_ ...
| |_ n15075141_9993.JPEG
|_ val/
| |_ ILSVRC2012_val_00000001.JPEG
| |_ ...
| |_ ILSVRC2012_val_00050000.JPEG
|_ train_list.txt
|_ val_list.txt
```
### Flowers102 Dataset
Download [Data](https://www.robots.ox.ac.uk/~vgg/data/flowers/102/) then decompress:
```shell
jpg/
setid.mat
imagelabels.mat
```
Please put all the files under ```PaddleClas/dataset/flowers102```
generate generate_flowers102_list.py and train_list.txt和val_list.txt
```bash
python generate_flowers102_list.py jpg train > train_list.txt
python generate_flowers102_list.py jpg valid > val_list.txt
```
Please organize data dir as below
```bash
PaddleClas/dataset/flowers102/
|_ jpg/
| |_ image_03601.jpg
| |_ ...
| |_ image_02355.jpg
|_ train_list.txt
|_ val_list.txt
```
# Getting Started
---
Please refer to [Installation](install.md) to setup environment at first, and prepare ImageNet1K data by following the instruction mentioned in the [data](data.md)
## Setup
**Setup PYTHONPATH:**
```bash
export PYTHONPATH=path_to_PaddleClas:$PYTHONPATH
```
## Training and validating
PaddleClas support `tools/train.py` and `tools/eval.py` to start training and validating.
### Training
```bash
# PaddleClas use paddle.distributed.launch to start multi-cards and multiprocess training.
# Set FLAGS_selected_gpus to indicate GPU cards
python -m paddle.distributed.launch \
--selected_gpus="0,1,2,3" \
tools/train.py \
-c ./configs/ResNet/ResNet50_vd.yaml
```
- log:
```
epoch:0 train step:13 loss:7.9561 top1:0.0156 top5:0.1094 lr:0.100000 elapse:0.193
```
add -o params to update configuration
```bash
python -m paddle.distributed.launch \
--selected_gpus="0,1,2,3" \
tools/train.py \
-c ./configs/ResNet/ResNet50_vd.yaml \
-o use_mix=1 \
--vdl_dir=./scalar/
```
- log:
```
epoch:0 train step:522 loss:1.6330 lr:0.100000 elapse:0.210
```
or modify configuration directly to config fileds, please refer to [config](config.md) for more details.
use visuldl to visulize training loss in the real time
```bash
visualdl --logdir ./scalar --host <host_IP> --port <port_num>
```
### finetune
* please refer to [Trial](./quick_start.md) for more details.
### validating
```bash
python tools/eval.py \
-c ./configs/eval.yaml \
-o ARCHITECTURE.name="ResNet50_vd" \
-o pretrained_model=path_to_pretrained_models
modify `configs/eval.yaml filed: `ARCHITECTURE.name` and filed: `pretrained_model` to config valid model or add -o params to update config directly.
**NOTE: ** when loading the pretrained model, should ignore the suffix ```.pdparams```
## Predict
PaddlePaddle supprot three predict interfaces
Use predicator interface to predict
First, export inference model
```bash
python tools/export_model.py \
--model=model_name \
--pretrained_model=pretrained_model_dir \
--output_path=save_inference_dir
```
Second, start predicator enginee:
```bash
python tools/infer/predict.py \
-m model_path \
-p params_path \
-i image path \
--use_gpu=1 \
--use_tensorrt=True
```
please refer to [inference](../extension/paddle_inference.md) for more details.
......@@ -5,5 +5,7 @@ tutorials
:maxdepth: 1
install.md
quick_start.md
data.md
getting_started.md
config.md
# Installation
---
## Introducation
This document introduces how to install PaddleClas and its requirements.
## Install PaddlePaddle
Python 3.5, CUDA 9.0, CUDNN7.0 nccl2.1.2 and later version are required at first, For now, PaddleClas only support training on the GPU device. Please follow the instructions in the [Installation](http://www.paddlepaddle.org.cn/install/quick) if the PaddlePaddle on the device is lower than v1.7
Install PaddlePaddle
```bash
pip install paddlepaddle-gpu --upgrade
```
or compile from source code, please refer to [Installation](http://www.paddlepaddle.org.cn/install/quick).
Verify Installation
```python
import paddle.fluid as fluid
fluid.install_check.run_check()
```
Check PaddlePaddle version:
```bash
python -c "import paddle; print(paddle.__version__)"
```
Note:
- Make sure the compiled version is later than v1.7
- Indicate **WITH_DISTRIBUTE=ON** when compiling, Please refer to [Instruction](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#id3) for more details.
## Install PaddleClas
**Clone PaddleClas: **
```
cd path_to_clone_PaddleClas
git clone https://github.com/PaddlePaddle/PaddleClas.git
```
**Install requirements**
```
pip install --upgrade -r requirements.txt
```
# Trial in 30mins
Based on the flowers102 dataset, it takes only 30 mins to experience PaddleClas, include training varieties of backbone and pretrained model, SSLD distillation, and multiple data augmentation, Please refer to [Installation](install.md) to install at first.
## Preparation
* enter insatallation dir
```
cd path_to_PaddleClas
```
* enter `dataset/flowers102`, download and decompress flowers102 dataset.
```shell
cd dataset/flowers102
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat
tar -xf 102flowers.tgz
```
* create train/val/test label files
```shell
python generate_flowers102_list.py jpg train > train_list.txt
python generate_flowers102_list.py jpg valid > val_list.txt
python generate_flowers102_list.py jpg test > extra_list.txt
cat train_list.txt extra_list.txt > train_extra_list.txt
```
**Note:** In order to offer more data to SSLD training task, train_list.txt and extra_list.txt will merge into train_extra_list.txft
* return `PaddleClas` dir
```
cd ../../
```
## Environment
### Set PYTHONPATH
```bash
export PYTHONPATH=./:$PYTHONPATH
```
### Download pretrained model
```bash
python tools/download.py -a ResNet50_vd -p ./pretrained -d True
python tools/download.py -a ResNet50_vd_ssld -p ./pretrained -d True
python tools/download.py -a MobileNetV3_large_x1_0 -p ./pretrained -d True
```
Paramters:
+ `architecture`(shortname: a): model name.
+ `path`(shortname: p) download path.
+ `decompress`(shortname: d) whether to decompress.
* All experiments are running on the NVIDIA® Tesla® V100 sigle card.
## Training
### Train from scratch
* Train ResNet50_vd
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd.yaml
```
The validation `Top1 Acc` curve is showmn below.
![](../../images/quick_start/r50_vd_acc.png)
### Finetune - ResNet50_vd pretrained model (Acc 79.12\%)
* finetune ResNet50_vd_ model pretrained on the 1000-class Imagenet dataset
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd_finetune.yaml
```
The validation `Top1 Acc` curve is shown below
![](../../images/quick_start/r50_vd_pretrained_acc.png)
Compare with training from scratch, it improve by 65\% to 94.02\%
### SSLD finetune - ResNet50_vd_ssld pretrained model (Acc 82.39\%)
Note: when finetuning model, which has been trained by SSLD, please use smaller learning rate in the middle of net.
```yaml
ARCHITECTURE:
name: 'ResNet50_vd'
params:
lr_mult_list: [0.1, 0.1, 0.2, 0.2, 0.3]
pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained"
```
Tringing script
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd_ssld_finetune.yaml
```
Compare with finetune on the 79.12% pretrained model, it improve by 0.9% to 95%.
### More architecture - MobileNetV3
Training script
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml
```
Compare with ResNet50_vd pretrained model, it decrease by 5% to 90%. Different architecture generates different performance, actually it is a task-oriented decision to apply the best performance model, should consider the inference time, storage, heterogeneous device, etc.
### RandomErasing
Data augmentation works when training data is small.
Training script
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd_ssld_random_erasing_finetune.yaml
```
It improves by 1.27\% to 96.27\%
* Save ResNet50_vd pretrained model to experience next chapter.
```shell
cp -r output/ResNet50_vd/19/ ./pretrained/flowers102_R50_vd_final/
```
### Distillation
* Use extra_list.txt as unlabeled data, Note:
* Samples in the `extra_list.txt` and `val_list.txt` don't have intersection
* Because of in the source code, label information is unused, This is still unlabeled distillation
* Teacher model use the pretrained_model trained on the flowers102 dataset, and student model use the MobileNetV3_large_x1_0 pretrained model(Acc 75.32\%) trained on the ImageNet1K dataset
```yaml
total_images: 7169
ARCHITECTURE:
name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0'
pretrained_model:
- "./pretrained/flowers102_R50_vd_final/ppcls"
- "./pretrained/MobileNetV3_large_x1_0_pretrained/”
TRAIN:
file_list: "./dataset/flowers102/train_extra_list.txt"
```
Final training script
```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
    --selected_gpus="0" \
    tools/train.py \
        -c ./configs/quick_start/R50_vd_distill_MV3_large_x1_0.yaml
```
It significantly imporve by 6.47% to 96.47% with more unlabeled data and teacher model.
### All accuracy
|Configuration | Top1 Acc |
|- |:-: |
| ResNet50_vd.yaml | 0.2735 |
| MobileNetV3_large_x1_0_finetune.yaml | 0.9000 |
| ResNet50_vd_finetune.yaml | 0.9402 |
| ResNet50_vd_ssld_finetune.yaml | 0.9500 |
| ResNet50_vd_ssld_random_erasing_finetune.yaml | 0.9627 |
| R50_vd_distill_MV3_large_x1_0.yaml | 0.9647 |
The whole accuracy curves are shown below
![](../../images/quick_start/all_acc.png)
* **NOTE**: As flowers102 is a small dataset, validatation accuracy maybe float 1%.
* Please refer to [Getting_started](./getting_started) for more details
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册