提交 efd5733b 编写于 作者: S shippingwang

refine

上级 be531fa0
# 开始使用
# Getting Started
---
请事先参考[安装指南](install.md)配置运行环境,并根据[数据说明](./data.md)文档准备ImageNet1k数据,本章节下面所有的实验均以ImageNet1k数据集为例。
Please refer to [Installation](install.md) to setup environment at first, and prepare ImageNet1K data by following the instruction mentioned in the [data](data.md)
## 一、设置环境变量
## Setup
**设置PYTHONPATH环境变量:**
**Setup PYTHONPATH:**
```bash
export PYTHONPATH=path_to_PaddleClas:$PYTHONPATH
```
## 二、模型训练与评估
## Training and validating
PaddleClas 提供模型训练与评估脚本:`tools/train.py``tools/eval.py`
PaddleClas support `tools/train.py` and `tools/eval.py` to start training and validating.
### 2.1 模型训练
按照如下方式启动模型训练。
### Training
```bash
# PaddleClas通过launch方式启动多卡多进程训练
# 通过设置FLAGS_selected_gpus 指定GPU运行卡号
# PaddleClas use paddle.distributed.launch to start multi-cards and multiprocess training.
# Set FLAGS_selected_gpus to indicate GPU cards
python -m paddle.distributed.launch \
--selected_gpus="0,1,2,3" \
......@@ -28,13 +26,13 @@ python -m paddle.distributed.launch \
-c ./configs/ResNet/ResNet50_vd.yaml
```
- 输出日志示例如下:
- log:
```
epoch:0 train step:13 loss:7.9561 top1:0.0156 top5:0.1094 lr:0.100000 elapse:0.193
```
可以通过添加-o参数来更新配置:
add -o params to update configuration
```bash
python -m paddle.distributed.launch \
......@@ -42,19 +40,19 @@ python -m paddle.distributed.launch \
tools/train.py \
-c ./configs/ResNet/ResNet50_vd.yaml \
-o use_mix=1 \
--vdl_dir=./scalar/
--vdl_dir=./scalar/
```
- 输出日志示例如下:
- log:
```
epoch:0 train step:522 loss:1.6330 lr:0.100000 elapse:0.210
```
也可以直接修改模型对应的配置文件更新配置。具体配置参数参考[配置文档](config.md)
or modify configuration directly to config fileds, please refer to [config](config.md) for more details.
训练期间可以通过VisualDL实时观察loss变化,启动命令如下:
use visuldl to visulize training loss in the real time
```bash
visualdl --logdir ./scalar --host <host_IP> --port <port_num>
......@@ -62,41 +60,44 @@ visualdl --logdir ./scalar --host <host_IP> --port <port_num>
```
### 2.2 模型微调
### finetune
* [30分钟玩转PaddleClas](./quick_start.md)中包含大量模型微调的示例,可以参考该章节在特定的数据集上进行模型微调。
* please refer to [Trial](./quick_start.md) for more details.
### 2.3 模型评估
### validating
```bash
python tools/eval.py \
-c ./configs/eval.yaml \
-o ARCHITECTURE.name="ResNet50_vd" \
-o pretrained_model=path_to_pretrained_models
```
可以更改configs/eval.yaml中的`ARCHITECTURE.name`字段和pretrained_model字段来配置评估模型,也可以通过-o参数更新配置。
**注意:** 加载预训练模型时,需要指定预训练模型的前缀,例如预训练模型参数所在的文件夹为`output/ResNet50_vd/19`,预训练模型参数的名称为`output/ResNet50_vd/19/ppcls.pdparams`,则`pretrained_model`参数需要指定为`output/ResNet50_vd/19/ppcls`,PaddleClas会自动补齐`.pdparams`的后缀。
modify `configs/eval.yaml filed: `ARCHITECTURE.name` and filed: `pretrained_model` to config valid model or add -o params to update config directly.
## 三、模型推理
**NOTE: ** when loading the pretrained model, should ignore the suffix ```.pdparams```
PaddlePaddle提供三种方式进行预测推理,接下来介绍如何用预测引擎进行推理:
首先,对训练好的模型进行转换:
## Predict
PaddlePaddle supprot three predict interfaces
Use predicator interface to predict
First, export inference model
```bash
python tools/export_model.py \
--model=模型名字 \
--pretrained_model=预训练模型路径 \
--output_path=预测模型保存路径
--model=model_name \
--pretrained_model=pretrained_model_dir \
--output_path=save_inference_dir
```
之后,通过预测引擎进行推理:
Second, start predicator enginee:
```bash
python tools/infer/predict.py \
-m model文件路径 \
-p params文件路径 \
-i 图片路径 \
-m model_path \
-p params_path \
-i image path \
--use_gpu=1 \
--use_tensorrt=True
```
更多使用方法和推理方式请参考[分类预测框架](../extension/paddle_inference.md)
please refer to [inference](../extension/paddle_inference.md) for more details.
初级使用
tutorials
================================
.. toctree::
......@@ -8,4 +8,4 @@
quick_start.md
data.md
getting_started.md
config.md
\ No newline at end of file
config.md
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册