Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
22055c1d
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
22055c1d
编写于
3月 29, 2021
作者:
L
lyuwenyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add pretrained arg
上级
6da86dd4
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
92 addition
and
92 deletion
+92
-92
hubconf.py
hubconf.py
+92
-92
未找到文件。
hubconf.py
浏览文件 @
22055c1d
...
...
@@ -54,10 +54,10 @@ _checkpoints = _load_pretrained_urls()
def
AlexNet
(
**
kwargs
):
def
AlexNet
(
pretrained
=
False
,
**
kwargs
):
'''AlexNet
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_alexnet
.
AlexNet
(
**
kwargs
)
if
pretrained
:
...
...
@@ -69,10 +69,10 @@ def AlexNet(**kwargs):
def
VGG11
(
**
kwargs
):
def
VGG11
(
pretrained
=
False
,
**
kwargs
):
'''VGG11
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_vgg
.
VGG11
(
**
kwargs
)
if
pretrained
:
...
...
@@ -83,10 +83,10 @@ def VGG11(**kwargs):
return
model
def
VGG13
(
**
kwargs
):
def
VGG13
(
pretrained
=
False
,
**
kwargs
):
'''VGG13
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_vgg
.
VGG13
(
**
kwargs
)
if
pretrained
:
...
...
@@ -97,10 +97,10 @@ def VGG13(**kwargs):
return
model
def
VGG16
(
**
kwargs
):
def
VGG16
(
pretrained
=
False
,
**
kwargs
):
'''VGG16
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_vgg
.
VGG16
(
**
kwargs
)
if
pretrained
:
...
...
@@ -111,10 +111,10 @@ def VGG16(**kwargs):
return
model
def
VGG19
(
**
kwargs
):
def
VGG19
(
pretrained
=
False
,
**
kwargs
):
'''VGG19
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_vgg
.
VGG19
(
**
kwargs
)
if
pretrained
:
...
...
@@ -127,10 +127,10 @@ def VGG19(**kwargs):
def
ResNet18
(
**
kwargs
):
def
ResNet18
(
pretrained
=
False
,
**
kwargs
):
'''ResNet18
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_resnet
.
ResNet18
(
**
kwargs
)
if
pretrained
:
...
...
@@ -141,10 +141,10 @@ def ResNet18(**kwargs):
return
model
def
ResNet34
(
**
kwargs
):
def
ResNet34
(
pretrained
=
False
,
**
kwargs
):
'''ResNet34
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_resnet
.
ResNet34
(
**
kwargs
)
if
pretrained
:
...
...
@@ -155,10 +155,10 @@ def ResNet34(**kwargs):
return
model
def
ResNet50
(
**
kwargs
):
def
ResNet50
(
pretrained
=
False
,
**
kwargs
):
'''ResNet50
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_resnet
.
ResNet50
(
**
kwargs
)
if
pretrained
:
...
...
@@ -169,10 +169,10 @@ def ResNet50(**kwargs):
return
model
def
ResNet101
(
**
kwargs
):
def
ResNet101
(
pretrained
=
False
,
**
kwargs
):
'''ResNet101
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_resnet
.
ResNet101
(
**
kwargs
)
if
pretrained
:
...
...
@@ -183,10 +183,10 @@ def ResNet101(**kwargs):
return
model
def
ResNet152
(
**
kwargs
):
def
ResNet152
(
pretrained
=
False
,
**
kwargs
):
'''ResNet152
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_resnet
.
ResNet152
(
**
kwargs
)
if
pretrained
:
...
...
@@ -198,10 +198,10 @@ def ResNet152(**kwargs):
def
SqueezeNet1_0
(
**
kwargs
):
def
SqueezeNet1_0
(
pretrained
=
False
,
**
kwargs
):
'''SqueezeNet1_0
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_squeezenet
.
SqueezeNet1_0
(
**
kwargs
)
if
pretrained
:
...
...
@@ -212,10 +212,10 @@ def SqueezeNet1_0(**kwargs):
return
model
def
SqueezeNet1_1
(
**
kwargs
):
def
SqueezeNet1_1
(
pretrained
=
False
,
**
kwargs
):
'''SqueezeNet1_1
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_squeezenet
.
SqueezeNet1_1
(
**
kwargs
)
if
pretrained
:
...
...
@@ -228,10 +228,10 @@ def SqueezeNet1_1(**kwargs):
def
DenseNet121
(
**
kwargs
):
def
DenseNet121
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet121
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_densenet
.
DenseNet121
(
**
kwargs
)
if
pretrained
:
...
...
@@ -242,10 +242,10 @@ def DenseNet121(**kwargs):
return
model
def
DenseNet161
(
**
kwargs
):
def
DenseNet161
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet161
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_densenet
.
DenseNet161
(
**
kwargs
)
if
pretrained
:
...
...
@@ -256,10 +256,10 @@ def DenseNet161(**kwargs):
return
model
def
DenseNet169
(
**
kwargs
):
def
DenseNet169
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet169
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_densenet
.
DenseNet169
(
**
kwargs
)
if
pretrained
:
...
...
@@ -270,10 +270,10 @@ def DenseNet169(**kwargs):
return
model
def
DenseNet201
(
**
kwargs
):
def
DenseNet201
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet201
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_densenet
.
DenseNet201
(
**
kwargs
)
if
pretrained
:
...
...
@@ -284,10 +284,10 @@ def DenseNet201(**kwargs):
return
model
def
DenseNet264
(
**
kwargs
):
def
DenseNet264
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet264
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_densenet
.
DenseNet264
(
**
kwargs
)
if
pretrained
:
...
...
@@ -299,10 +299,10 @@ def DenseNet264(**kwargs):
def
InceptionV3
(
**
kwargs
):
def
InceptionV3
(
pretrained
=
False
,
**
kwargs
):
'''InceptionV3
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_inception_v3
.
InceptionV3
(
**
kwargs
)
if
pretrained
:
...
...
@@ -313,10 +313,10 @@ def InceptionV3(**kwargs):
return
model
def
InceptionV4
(
**
kwargs
):
def
InceptionV4
(
pretrained
=
False
,
**
kwargs
):
'''InceptionV4
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_inception_v4
.
InceptionV4
(
**
kwargs
)
if
pretrained
:
...
...
@@ -328,10 +328,10 @@ def InceptionV4(**kwargs):
def
GoogLeNet
(
**
kwargs
):
def
GoogLeNet
(
pretrained
=
False
,
**
kwargs
):
'''GoogLeNet
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_googlenet
.
GoogLeNet
(
**
kwargs
)
if
pretrained
:
...
...
@@ -343,10 +343,10 @@ def GoogLeNet(**kwargs):
def
ShuffleNet
(
**
kwargs
):
def
ShuffleNet
(
pretrained
=
False
,
**
kwargs
):
'''ShuffleNet
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_shufflenet_v2
.
ShuffleNet
(
**
kwargs
)
if
pretrained
:
...
...
@@ -358,10 +358,10 @@ def ShuffleNet(**kwargs):
def
MobileNetV1
(
**
kwargs
):
def
MobileNetV1
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v1
.
MobileNetV1
(
**
kwargs
)
if
pretrained
:
...
...
@@ -372,10 +372,10 @@ def MobileNetV1(**kwargs):
return
model
def
MobileNetV1_x0_25
(
**
kwargs
):
def
MobileNetV1_x0_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1_x0_25
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v1
.
MobileNetV1_x0_25
(
**
kwargs
)
if
pretrained
:
...
...
@@ -386,10 +386,10 @@ def MobileNetV1_x0_25(**kwargs):
return
model
def
MobileNetV1_x0_5
(
**
kwargs
):
def
MobileNetV1_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1_x0_5
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v1
.
MobileNetV1_x0_5
(
**
kwargs
)
if
pretrained
:
...
...
@@ -400,10 +400,10 @@ def MobileNetV1_x0_5(**kwargs):
return
model
def
MobileNetV1_x0_75
(
**
kwargs
):
def
MobileNetV1_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1_x0_75
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v1
.
MobileNetV1_x0_75
(
**
kwargs
)
if
pretrained
:
...
...
@@ -414,10 +414,10 @@ def MobileNetV1_x0_75(**kwargs):
return
model
def
MobileNetV2_x0_25
(
**
kwargs
):
def
MobileNetV2_x0_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x0_25
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v2
.
MobileNetV2_x0_25
(
**
kwargs
)
if
pretrained
:
...
...
@@ -428,10 +428,10 @@ def MobileNetV2_x0_25(**kwargs):
return
model
def
MobileNetV2_x0_5
(
**
kwargs
):
def
MobileNetV2_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x0_5
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v2
.
MobileNetV2_x0_5
(
**
kwargs
)
if
pretrained
:
...
...
@@ -442,10 +442,10 @@ def MobileNetV2_x0_5(**kwargs):
return
model
def
MobileNetV2_x0_75
(
**
kwargs
):
def
MobileNetV2_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x0_75
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v2
.
MobileNetV2_x0_75
(
**
kwargs
)
if
pretrained
:
...
...
@@ -456,10 +456,10 @@ def MobileNetV2_x0_75(**kwargs):
return
model
def
MobileNetV2_x1_5
(
**
kwargs
):
def
MobileNetV2_x1_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x1_5
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v2
.
MobileNetV2_x1_5
(
**
kwargs
)
if
pretrained
:
...
...
@@ -470,10 +470,10 @@ def MobileNetV2_x1_5(**kwargs):
return
model
def
MobileNetV2_x2_0
(
**
kwargs
):
def
MobileNetV2_x2_0
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x2_0
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v2
.
MobileNetV2_x2_0
(
**
kwargs
)
if
pretrained
:
...
...
@@ -484,10 +484,10 @@ def MobileNetV2_x2_0(**kwargs):
return
model
def
MobileNetV3_large_x0_35
(
**
kwargs
):
def
MobileNetV3_large_x0_35
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x0_35
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_35
(
**
kwargs
)
if
pretrained
:
...
...
@@ -498,10 +498,10 @@ def MobileNetV3_large_x0_35(**kwargs):
return
model
def
MobileNetV3_large_x0_5
(
**
kwargs
):
def
MobileNetV3_large_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x0_5
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_5
(
**
kwargs
)
if
pretrained
:
...
...
@@ -512,10 +512,10 @@ def MobileNetV3_large_x0_5(**kwargs):
return
model
def
MobileNetV3_large_x0_75
(
**
kwargs
):
def
MobileNetV3_large_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x0_75
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_75
(
**
kwargs
)
if
pretrained
:
...
...
@@ -526,10 +526,10 @@ def MobileNetV3_large_x0_75(**kwargs):
return
model
def
MobileNetV3_large_x1_0
(
**
kwargs
):
def
MobileNetV3_large_x1_0
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x1_0
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_large_x1_0
(
**
kwargs
)
if
pretrained
:
...
...
@@ -540,10 +540,10 @@ def MobileNetV3_large_x1_0(**kwargs):
return
model
def
MobileNetV3_large_x1_25
(
**
kwargs
):
def
MobileNetV3_large_x1_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x1_25
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_large_x1_25
(
**
kwargs
)
if
pretrained
:
...
...
@@ -554,10 +554,10 @@ def MobileNetV3_large_x1_25(**kwargs):
return
model
def
MobileNetV3_small_x0_35
(
**
kwargs
):
def
MobileNetV3_small_x0_35
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x0_35
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_35
(
**
kwargs
)
if
pretrained
:
...
...
@@ -568,10 +568,10 @@ def MobileNetV3_small_x0_35(**kwargs):
return
model
def
MobileNetV3_small_x0_5
(
**
kwargs
):
def
MobileNetV3_small_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x0_5
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_5
(
**
kwargs
)
if
pretrained
:
...
...
@@ -582,10 +582,10 @@ def MobileNetV3_small_x0_5(**kwargs):
return
model
def
MobileNetV3_small_x0_75
(
**
kwargs
):
def
MobileNetV3_small_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x0_75
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_75
(
**
kwargs
)
if
pretrained
:
...
...
@@ -596,10 +596,10 @@ def MobileNetV3_small_x0_75(**kwargs):
return
model
def
MobileNetV3_small_x1_0
(
**
kwargs
):
def
MobileNetV3_small_x1_0
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x1_0
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_small_x1_0
(
**
kwargs
)
if
pretrained
:
...
...
@@ -610,10 +610,10 @@ def MobileNetV3_small_x1_0(**kwargs):
return
model
def
MobileNetV3_small_x1_25
(
**
kwargs
):
def
MobileNetV3_small_x1_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x1_25
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_small_x1_25
(
**
kwargs
)
if
pretrained
:
...
...
@@ -625,10 +625,10 @@ def MobileNetV3_small_x1_25(**kwargs):
def
ResNeXt101_32x4d
(
**
kwargs
):
def
ResNeXt101_32x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt101_32x4d
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt101_32x4d
(
**
kwargs
)
if
pretrained
:
...
...
@@ -639,10 +639,10 @@ def ResNeXt101_32x4d(**kwargs):
return
model
def
ResNeXt101_64x4d
(
**
kwargs
):
def
ResNeXt101_64x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt101_64x4d
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt101_64x4d
(
**
kwargs
)
if
pretrained
:
...
...
@@ -653,10 +653,10 @@ def ResNeXt101_64x4d(**kwargs):
return
model
def
ResNeXt152_32x4d
(
**
kwargs
):
def
ResNeXt152_32x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt152_32x4d
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt152_32x4d
(
**
kwargs
)
if
pretrained
:
...
...
@@ -667,10 +667,10 @@ def ResNeXt152_32x4d(**kwargs):
return
model
def
ResNeXt152_64x4d
(
**
kwargs
):
def
ResNeXt152_64x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt152_64x4d
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt152_64x4d
(
**
kwargs
)
if
pretrained
:
...
...
@@ -681,10 +681,10 @@ def ResNeXt152_64x4d(**kwargs):
return
model
def
ResNeXt50_32x4d
(
**
kwargs
):
def
ResNeXt50_32x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt50_32x4d
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt50_32x4d
(
**
kwargs
)
if
pretrained
:
...
...
@@ -695,10 +695,10 @@ def ResNeXt50_32x4d(**kwargs):
return
model
def
ResNeXt50_64x4d
(
**
kwargs
):
def
ResNeXt50_64x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt50_64x4d
'''
pretrained
=
kwargs
.
pop
(
'pretrained'
,
False
)
#
pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt50_64x4d
(
**
kwargs
)
if
pretrained
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录