提交 22055c1d 编写于 作者: L lyuwenyu

add pretrained arg

上级 6da86dd4
......@@ -54,10 +54,10 @@ _checkpoints = _load_pretrained_urls()
def AlexNet(**kwargs):
def AlexNet(pretrained=False, **kwargs):
'''AlexNet
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _alexnet.AlexNet(**kwargs)
if pretrained:
......@@ -69,10 +69,10 @@ def AlexNet(**kwargs):
def VGG11(**kwargs):
def VGG11(pretrained=False, **kwargs):
'''VGG11
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG11(**kwargs)
if pretrained:
......@@ -83,10 +83,10 @@ def VGG11(**kwargs):
return model
def VGG13(**kwargs):
def VGG13(pretrained=False, **kwargs):
'''VGG13
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG13(**kwargs)
if pretrained:
......@@ -97,10 +97,10 @@ def VGG13(**kwargs):
return model
def VGG16(**kwargs):
def VGG16(pretrained=False, **kwargs):
'''VGG16
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG16(**kwargs)
if pretrained:
......@@ -111,10 +111,10 @@ def VGG16(**kwargs):
return model
def VGG19(**kwargs):
def VGG19(pretrained=False, **kwargs):
'''VGG19
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG19(**kwargs)
if pretrained:
......@@ -127,10 +127,10 @@ def VGG19(**kwargs):
def ResNet18(**kwargs):
def ResNet18(pretrained=False, **kwargs):
'''ResNet18
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet18(**kwargs)
if pretrained:
......@@ -141,10 +141,10 @@ def ResNet18(**kwargs):
return model
def ResNet34(**kwargs):
def ResNet34(pretrained=False, **kwargs):
'''ResNet34
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet34(**kwargs)
if pretrained:
......@@ -155,10 +155,10 @@ def ResNet34(**kwargs):
return model
def ResNet50(**kwargs):
def ResNet50(pretrained=False, **kwargs):
'''ResNet50
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet50(**kwargs)
if pretrained:
......@@ -169,10 +169,10 @@ def ResNet50(**kwargs):
return model
def ResNet101(**kwargs):
def ResNet101(pretrained=False, **kwargs):
'''ResNet101
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet101(**kwargs)
if pretrained:
......@@ -183,10 +183,10 @@ def ResNet101(**kwargs):
return model
def ResNet152(**kwargs):
def ResNet152(pretrained=False, **kwargs):
'''ResNet152
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet152(**kwargs)
if pretrained:
......@@ -198,10 +198,10 @@ def ResNet152(**kwargs):
def SqueezeNet1_0(**kwargs):
def SqueezeNet1_0(pretrained=False, **kwargs):
'''SqueezeNet1_0
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _squeezenet.SqueezeNet1_0(**kwargs)
if pretrained:
......@@ -212,10 +212,10 @@ def SqueezeNet1_0(**kwargs):
return model
def SqueezeNet1_1(**kwargs):
def SqueezeNet1_1(pretrained=False, **kwargs):
'''SqueezeNet1_1
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _squeezenet.SqueezeNet1_1(**kwargs)
if pretrained:
......@@ -228,10 +228,10 @@ def SqueezeNet1_1(**kwargs):
def DenseNet121(**kwargs):
def DenseNet121(pretrained=False, **kwargs):
'''DenseNet121
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet121(**kwargs)
if pretrained:
......@@ -242,10 +242,10 @@ def DenseNet121(**kwargs):
return model
def DenseNet161(**kwargs):
def DenseNet161(pretrained=False, **kwargs):
'''DenseNet161
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet161(**kwargs)
if pretrained:
......@@ -256,10 +256,10 @@ def DenseNet161(**kwargs):
return model
def DenseNet169(**kwargs):
def DenseNet169(pretrained=False, **kwargs):
'''DenseNet169
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet169(**kwargs)
if pretrained:
......@@ -270,10 +270,10 @@ def DenseNet169(**kwargs):
return model
def DenseNet201(**kwargs):
def DenseNet201(pretrained=False, **kwargs):
'''DenseNet201
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet201(**kwargs)
if pretrained:
......@@ -284,10 +284,10 @@ def DenseNet201(**kwargs):
return model
def DenseNet264(**kwargs):
def DenseNet264(pretrained=False, **kwargs):
'''DenseNet264
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet264(**kwargs)
if pretrained:
......@@ -299,10 +299,10 @@ def DenseNet264(**kwargs):
def InceptionV3(**kwargs):
def InceptionV3(pretrained=False, **kwargs):
'''InceptionV3
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _inception_v3.InceptionV3(**kwargs)
if pretrained:
......@@ -313,10 +313,10 @@ def InceptionV3(**kwargs):
return model
def InceptionV4(**kwargs):
def InceptionV4(pretrained=False, **kwargs):
'''InceptionV4
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _inception_v4.InceptionV4(**kwargs)
if pretrained:
......@@ -328,10 +328,10 @@ def InceptionV4(**kwargs):
def GoogLeNet(**kwargs):
def GoogLeNet(pretrained=False, **kwargs):
'''GoogLeNet
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _googlenet.GoogLeNet(**kwargs)
if pretrained:
......@@ -343,10 +343,10 @@ def GoogLeNet(**kwargs):
def ShuffleNet(**kwargs):
def ShuffleNet(pretrained=False, **kwargs):
'''ShuffleNet
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _shufflenet_v2.ShuffleNet(**kwargs)
if pretrained:
......@@ -358,10 +358,10 @@ def ShuffleNet(**kwargs):
def MobileNetV1(**kwargs):
def MobileNetV1(pretrained=False, **kwargs):
'''MobileNetV1
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1(**kwargs)
if pretrained:
......@@ -372,10 +372,10 @@ def MobileNetV1(**kwargs):
return model
def MobileNetV1_x0_25(**kwargs):
def MobileNetV1_x0_25(pretrained=False, **kwargs):
'''MobileNetV1_x0_25
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_25(**kwargs)
if pretrained:
......@@ -386,10 +386,10 @@ def MobileNetV1_x0_25(**kwargs):
return model
def MobileNetV1_x0_5(**kwargs):
def MobileNetV1_x0_5(pretrained=False, **kwargs):
'''MobileNetV1_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_5(**kwargs)
if pretrained:
......@@ -400,10 +400,10 @@ def MobileNetV1_x0_5(**kwargs):
return model
def MobileNetV1_x0_75(**kwargs):
def MobileNetV1_x0_75(pretrained=False, **kwargs):
'''MobileNetV1_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_75(**kwargs)
if pretrained:
......@@ -414,10 +414,10 @@ def MobileNetV1_x0_75(**kwargs):
return model
def MobileNetV2_x0_25(**kwargs):
def MobileNetV2_x0_25(pretrained=False, **kwargs):
'''MobileNetV2_x0_25
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_25(**kwargs)
if pretrained:
......@@ -428,10 +428,10 @@ def MobileNetV2_x0_25(**kwargs):
return model
def MobileNetV2_x0_5(**kwargs):
def MobileNetV2_x0_5(pretrained=False, **kwargs):
'''MobileNetV2_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_5(**kwargs)
if pretrained:
......@@ -442,10 +442,10 @@ def MobileNetV2_x0_5(**kwargs):
return model
def MobileNetV2_x0_75(**kwargs):
def MobileNetV2_x0_75(pretrained=False, **kwargs):
'''MobileNetV2_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_75(**kwargs)
if pretrained:
......@@ -456,10 +456,10 @@ def MobileNetV2_x0_75(**kwargs):
return model
def MobileNetV2_x1_5(**kwargs):
def MobileNetV2_x1_5(pretrained=False, **kwargs):
'''MobileNetV2_x1_5
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x1_5(**kwargs)
if pretrained:
......@@ -470,10 +470,10 @@ def MobileNetV2_x1_5(**kwargs):
return model
def MobileNetV2_x2_0(**kwargs):
def MobileNetV2_x2_0(pretrained=False, **kwargs):
'''MobileNetV2_x2_0
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x2_0(**kwargs)
if pretrained:
......@@ -484,10 +484,10 @@ def MobileNetV2_x2_0(**kwargs):
return model
def MobileNetV3_large_x0_35(**kwargs):
def MobileNetV3_large_x0_35(pretrained=False, **kwargs):
'''MobileNetV3_large_x0_35
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_35(**kwargs)
if pretrained:
......@@ -498,10 +498,10 @@ def MobileNetV3_large_x0_35(**kwargs):
return model
def MobileNetV3_large_x0_5(**kwargs):
def MobileNetV3_large_x0_5(pretrained=False, **kwargs):
'''MobileNetV3_large_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_5(**kwargs)
if pretrained:
......@@ -512,10 +512,10 @@ def MobileNetV3_large_x0_5(**kwargs):
return model
def MobileNetV3_large_x0_75(**kwargs):
def MobileNetV3_large_x0_75(pretrained=False, **kwargs):
'''MobileNetV3_large_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_75(**kwargs)
if pretrained:
......@@ -526,10 +526,10 @@ def MobileNetV3_large_x0_75(**kwargs):
return model
def MobileNetV3_large_x1_0(**kwargs):
def MobileNetV3_large_x1_0(pretrained=False, **kwargs):
'''MobileNetV3_large_x1_0
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x1_0(**kwargs)
if pretrained:
......@@ -540,10 +540,10 @@ def MobileNetV3_large_x1_0(**kwargs):
return model
def MobileNetV3_large_x1_25(**kwargs):
def MobileNetV3_large_x1_25(pretrained=False, **kwargs):
'''MobileNetV3_large_x1_25
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x1_25(**kwargs)
if pretrained:
......@@ -554,10 +554,10 @@ def MobileNetV3_large_x1_25(**kwargs):
return model
def MobileNetV3_small_x0_35(**kwargs):
def MobileNetV3_small_x0_35(pretrained=False, **kwargs):
'''MobileNetV3_small_x0_35
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_35(**kwargs)
if pretrained:
......@@ -568,10 +568,10 @@ def MobileNetV3_small_x0_35(**kwargs):
return model
def MobileNetV3_small_x0_5(**kwargs):
def MobileNetV3_small_x0_5(pretrained=False, **kwargs):
'''MobileNetV3_small_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_5(**kwargs)
if pretrained:
......@@ -582,10 +582,10 @@ def MobileNetV3_small_x0_5(**kwargs):
return model
def MobileNetV3_small_x0_75(**kwargs):
def MobileNetV3_small_x0_75(pretrained=False, **kwargs):
'''MobileNetV3_small_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_75(**kwargs)
if pretrained:
......@@ -596,10 +596,10 @@ def MobileNetV3_small_x0_75(**kwargs):
return model
def MobileNetV3_small_x1_0(**kwargs):
def MobileNetV3_small_x1_0(pretrained=False, **kwargs):
'''MobileNetV3_small_x1_0
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x1_0(**kwargs)
if pretrained:
......@@ -610,10 +610,10 @@ def MobileNetV3_small_x1_0(**kwargs):
return model
def MobileNetV3_small_x1_25(**kwargs):
def MobileNetV3_small_x1_25(pretrained=False, **kwargs):
'''MobileNetV3_small_x1_25
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x1_25(**kwargs)
if pretrained:
......@@ -625,10 +625,10 @@ def MobileNetV3_small_x1_25(**kwargs):
def ResNeXt101_32x4d(**kwargs):
def ResNeXt101_32x4d(pretrained=False, **kwargs):
'''ResNeXt101_32x4d
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt101_32x4d(**kwargs)
if pretrained:
......@@ -639,10 +639,10 @@ def ResNeXt101_32x4d(**kwargs):
return model
def ResNeXt101_64x4d(**kwargs):
def ResNeXt101_64x4d(pretrained=False, **kwargs):
'''ResNeXt101_64x4d
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt101_64x4d(**kwargs)
if pretrained:
......@@ -653,10 +653,10 @@ def ResNeXt101_64x4d(**kwargs):
return model
def ResNeXt152_32x4d(**kwargs):
def ResNeXt152_32x4d(pretrained=False, **kwargs):
'''ResNeXt152_32x4d
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt152_32x4d(**kwargs)
if pretrained:
......@@ -667,10 +667,10 @@ def ResNeXt152_32x4d(**kwargs):
return model
def ResNeXt152_64x4d(**kwargs):
def ResNeXt152_64x4d(pretrained=False, **kwargs):
'''ResNeXt152_64x4d
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt152_64x4d(**kwargs)
if pretrained:
......@@ -681,10 +681,10 @@ def ResNeXt152_64x4d(**kwargs):
return model
def ResNeXt50_32x4d(**kwargs):
def ResNeXt50_32x4d(pretrained=False, **kwargs):
'''ResNeXt50_32x4d
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt50_32x4d(**kwargs)
if pretrained:
......@@ -695,10 +695,10 @@ def ResNeXt50_32x4d(**kwargs):
return model
def ResNeXt50_64x4d(**kwargs):
def ResNeXt50_64x4d(pretrained=False, **kwargs):
'''ResNeXt50_64x4d
'''
pretrained = kwargs.pop('pretrained', False)
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt50_64x4d(**kwargs)
if pretrained:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册