Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
01c5c43e
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
01c5c43e
编写于
7月 13, 2022
作者:
W
Walter
提交者:
GitHub
7月 13, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2144 from RainFrost1/develop
fix lite_shitu bugs
上级
0707ff6f
ce038052
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
371 addition
and
265 deletion
+371
-265
deploy/lite_shitu/README.md
deploy/lite_shitu/README.md
+47
-14
deploy/lite_shitu/images/demo.jpeg
deploy/lite_shitu/images/demo.jpeg
+0
-0
deploy/lite_shitu/images/demo.jpg
deploy/lite_shitu/images/demo.jpg
+0
-0
deploy/lite_shitu/include/config_parser.h
deploy/lite_shitu/include/config_parser.h
+4
-4
deploy/lite_shitu/include/feature_extractor.h
deploy/lite_shitu/include/feature_extractor.h
+14
-12
deploy/lite_shitu/include/object_detector.h
deploy/lite_shitu/include/object_detector.h
+29
-32
deploy/lite_shitu/include/picodet_postprocess.h
deploy/lite_shitu/include/picodet_postprocess.h
+12
-14
deploy/lite_shitu/include/preprocess_op.h
deploy/lite_shitu/include/preprocess_op.h
+43
-41
deploy/lite_shitu/include/utils.h
deploy/lite_shitu/include/utils.h
+18
-1
deploy/lite_shitu/include/vector_search.h
deploy/lite_shitu/include/vector_search.h
+1
-1
deploy/lite_shitu/src/config_parser.cc
deploy/lite_shitu/src/config_parser.cc
+1
-1
deploy/lite_shitu/src/feature_extractor.cc
deploy/lite_shitu/src/feature_extractor.cc
+23
-66
deploy/lite_shitu/src/main.cc
deploy/lite_shitu/src/main.cc
+18
-3
deploy/lite_shitu/src/object_detector.cc
deploy/lite_shitu/src/object_detector.cc
+30
-39
deploy/lite_shitu/src/picodet_postprocess.cc
deploy/lite_shitu/src/picodet_postprocess.cc
+3
-3
deploy/lite_shitu/src/preprocess_op.cc
deploy/lite_shitu/src/preprocess_op.cc
+78
-33
deploy/lite_shitu/src/utils.cc
deploy/lite_shitu/src/utils.cc
+49
-0
deploy/lite_shitu/src/vector_search.cc
deploy/lite_shitu/src/vector_search.cc
+1
-1
未找到文件。
deploy/lite_shitu/README.md
浏览文件 @
01c5c43e
...
...
@@ -92,9 +92,9 @@ PaddleClas 提供了转换并优化后的推理模型,可以直接参考下方
```
shell
# 进入lite_ppshitu目录
cd
$PaddleClas
/deploy/lite_shitu
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/lite/ppshitu_lite_models_v1.
1
.tar
tar
-xf
ppshitu_lite_models_v1.
1
.tar
rm
-f
ppshitu_lite_models_v1.
1
.tar
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/lite/ppshitu_lite_models_v1.
2
.tar
tar
-xf
ppshitu_lite_models_v1.
2
.tar
rm
-f
ppshitu_lite_models_v1.
2
.tar
```
#### 2.1.2 使用其他模型
...
...
@@ -162,7 +162,7 @@ git clone https://github.com/PaddlePaddle/PaddleDetection.git
# 进入PaddleDetection根目录
cd
PaddleDetection
# 将预训练模型导出为inference模型
python tools/export_model.py
-c
configs/picodet/application/mainbody_detection/picodet_lcnet_x2_5_640_mainbody.yml
-o
weights
=
https://paddledet.bj.bcebos.com/models/picodet_lcnet_x2_5_640_mainbody.pdparams
--output_dir
=
inference
python tools/export_model.py
-c
configs/picodet/application/mainbody_detection/picodet_lcnet_x2_5_640_mainbody.yml
-o
weights
=
https://paddledet.bj.bcebos.com/models/picodet_lcnet_x2_5_640_mainbody.pdparams
export_post_process
=
False
--output_dir
=
inference
# 将inference模型转化为Paddle-Lite优化模型
paddle_lite_opt
--model_file
=
inference/picodet_lcnet_x2_5_640_mainbody/model.pdmodel
--param_file
=
inference/picodet_lcnet_x2_5_640_mainbody/model.pdiparams
--optimize_out
=
inference/picodet_lcnet_x2_5_640_mainbody/mainbody_det
# 将转好的模型复制到lite_shitu目录下
...
...
@@ -183,24 +183,56 @@ cd deploy/lite_shitu
**注意**
:
`--optimize_out`
参数为优化后模型的保存路径,无需加后缀
`.nb`
;
`--model_file`
参数为模型结构信息文件的路径,
`--param_file`
参数为模型权重信息文件的路径,请注意文件名。
### 2.2 将yaml文件转换成json文件
### 2.2 生成新的检索库
由于lite 版本的检索库用的是
`faiss1.5.3`
版本,与新版本不兼容,因此需要重新生成index库
#### 2.2.1 数据及环境配置
```
shell
# 进入上级目录
cd
..
# 下载瓶装饮料数据集
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar
&&
tar
-xf
drink_dataset_v1.0.tar
rm
-rf
drink_dataset_v1.0.tar
rm
-rf
drink_dataset_v1.0/index
# 安装1.5.3版本的faiss
pip
install
faiss-cpu
==
1.5.3
# 下载通用识别模型,可替换成自己的inference model
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar
tar
-xf
general_PPLCNet_x2_5_lite_v1.0_infer.tar
rm
-rf
general_PPLCNet_x2_5_lite_v1.0_infer.tar
```
#### 2.2.2 生成新的index文件
```
shell
# 生成新的index库,注意指定好识别模型的路径,同时将index_mothod修改成Flat,HNSW32和IVF在此版本中可能存在bug,请慎重使用。
# 如果使用自己的识别模型,对应的修改inference model的目录
python python/build_gallery.py
-c
configs/inference_drink.yaml
-o
Global.rec_inference_model_dir
=
general_PPLCNet_x2_5_lite_v1.0_infer
-o
IndexProcess.index_method
=
Flat
# 进入到lite_shitu目录
cd
lite_shitu
mv
../drink_dataset_v1.0 .
```
### 2.3 将yaml文件转换成json文件
```
shell
# 如果测试单张图像
python generate_json_config.py
--det_model_path
ppshitu_lite_models_v1.
1/mainbody_PPLCNet_x2_5_640_quant_v1.1_lite.nb
--rec_model_path
ppshitu_lite_models_v1.1/general_PPLCNet_x2_5_lite_v1.1_infer.nb
--img_path
images/demo.jp
g
python generate_json_config.py
--det_model_path
ppshitu_lite_models_v1.
2/mainbody_PPLCNet_x2_5_640_v1.2_lite.nb
--rec_model_path
ppshitu_lite_models_v1.2/general_PPLCNet_x2_5_lite_v1.2_infer.nb
--img_path
images/demo.jpe
g
# or
# 如果测试多张图像
python generate_json_config.py
--det_model_path
ppshitu_lite_models_v1.
1/mainbody_PPLCNet_x2_5_640_quant_v1.1_lite.nb
--rec_model_path
ppshitu_lite_models_v1.1/general_PPLCNet_x2_5_lite_v1.1
_infer.nb
--img_dir
images
python generate_json_config.py
--det_model_path
ppshitu_lite_models_v1.
2/mainbody_PPLCNet_x2_5_640_v1.2_lite.nb
--rec_model_path
ppshitu_lite_models_v1.2/general_PPLCNet_x2_5_lite_v1.2
_infer.nb
--img_dir
images
# 执行完成后,会在lit_shitu下生成shitu_config.json配置文件
```
### 2.
3
index字典转换
### 2.
4
index字典转换
由于python的检索库字典,使用
`pickle`
进行的序列化存储,导致C++不方便读取,因此需要进行转换
```
shell
# 下载瓶装饮料数据集
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar
&&
tar
-xf
drink_dataset_v1.0.tar
rm
-rf
drink_dataset_v1.0.tar
# 转化id_map.pkl为id_map.txt
python transform_id_map.py
-c
../configs/inference_drink.yaml
...
...
@@ -208,7 +240,7 @@ python transform_id_map.py -c ../configs/inference_drink.yaml
转换成功后,会在
`IndexProcess.index_dir`
目录下生成
`id_map.txt`
。
### 2.
4
与手机联调
### 2.
5
与手机联调
首先需要进行一些准备工作。
1.
准备一台arm8的安卓手机,如果编译的预测库是armv7,则需要arm7的手机,并修改Makefile中
`ARM_ABI=arm7`
。
...
...
@@ -308,8 +340,9 @@ chmod 777 pp_shitu
运行效果如下:
```
images/demo.jpg:
result0: bbox[253, 275, 1146, 872], score: 0.974196, label: 伊藤园_果蔬汁
images/demo.jpeg:
result0: bbox[344, 98, 527, 593], score: 0.811656, label: 红牛-强化型
result1: bbox[0, 0, 600, 600], score: 0.729664, label: 红牛-强化型
```
## FAQ
...
...
deploy/lite_shitu/images/demo.jpeg
0 → 100644
浏览文件 @
01c5c43e
346.5 KB
deploy/lite_shitu/images/demo.jpg
已删除
100644 → 0
浏览文件 @
0707ff6f
445.0 KB
deploy/lite_shitu/include/config_parser.h
浏览文件 @
01c5c43e
...
...
@@ -29,16 +29,16 @@
namespace
PPShiTu
{
void
load_jsonf
(
std
::
string
jsonfile
,
Json
::
Value
&
jsondata
);
void
load_jsonf
(
std
::
string
jsonfile
,
Json
::
Value
&
jsondata
);
// Inference model configuration parser
class
ConfigPaser
{
public:
public:
ConfigPaser
()
{}
~
ConfigPaser
()
{}
bool
load_config
(
const
Json
::
Value
&
config
)
{
bool
load_config
(
const
Json
::
Value
&
config
)
{
// Get model arch : YOLO, SSD, RetinaNet, RCNN, Face
if
(
config
[
"Global"
].
isMember
(
"det_arch"
))
{
...
...
@@ -89,4 +89,4 @@ class ConfigPaser {
std
::
vector
<
int
>
fpn_stride_
;
};
}
// namespace PPShiTu
}
// namespace PPShiTu
deploy/lite_shitu/include/feature_extractor.h
浏览文件 @
01c5c43e
...
...
@@ -18,6 +18,7 @@
#include <arm_neon.h>
#include <chrono>
#include <fstream>
#include <include/preprocess_op.h>
#include <iostream>
#include <math.h>
#include <opencv2/opencv.hpp>
...
...
@@ -48,10 +49,6 @@ public:
config_file
[
"Global"
][
"rec_model_path"
].
as
<
std
::
string
>
());
this
->
predictor
=
CreatePaddlePredictor
<
MobileConfig
>
(
config
);
if
(
config_file
[
"Global"
][
"rec_label_path"
].
as
<
std
::
string
>
().
empty
())
{
std
::
cout
<<
"Please set [rec_label_path] in config file"
<<
std
::
endl
;
exit
(
-
1
);
}
SetPreProcessParam
(
config_file
[
"RecPreProcess"
][
"transform_ops"
]);
printf
(
"feature extract model create!
\n
"
);
}
...
...
@@ -68,24 +65,29 @@ public:
this
->
mean
.
emplace_back
(
tmp
.
as
<
float
>
());
}
for
(
auto
tmp
:
item
[
"std"
])
{
this
->
std
.
emplace_back
(
1
/
tmp
.
as
<
float
>
());
this
->
std
.
emplace_back
(
tmp
.
as
<
float
>
());
}
this
->
scale
=
item
[
"scale"
].
as
<
double
>
();
}
}
}
void
RunRecModel
(
const
cv
::
Mat
&
img
,
double
&
cost_time
,
std
::
vector
<
float
>
&
feature
);
//void PostProcess(
std::vector<float> &feature);
cv
::
Mat
ResizeImage
(
const
cv
::
Mat
&
img
);
void
NeonMeanScale
(
const
float
*
din
,
float
*
dout
,
int
size
);
void
RunRecModel
(
const
cv
::
Mat
&
img
,
double
&
cost_time
,
std
::
vector
<
float
>
&
feature
);
// void PostProcess(std::vector<float> &feature
);
void
FeatureNorm
(
std
::
vector
<
float
>
&
featuer
);
private:
std
::
shared_ptr
<
PaddlePredictor
>
predictor
;
//std::vector<std::string> label_list;
//
std::vector<std::string> label_list;
std
::
vector
<
float
>
mean
=
{
0.485
f
,
0.456
f
,
0.406
f
};
std
::
vector
<
float
>
std
=
{
1
/
0.229
f
,
1
/
0.224
f
,
1
/
0.225
f
};
std
::
vector
<
float
>
std
=
{
0.229
f
,
0.224
f
,
0.225
f
};
double
scale
=
0.00392157
;
float
size
=
224
;
int
size
=
224
;
// pre-process
Resize
resize_op_
;
NormalizeImage
normalize_op_
;
Permute
permute_op_
;
};
}
// namespace PPShiTu
deploy/lite_shitu/include/object_detector.h
浏览文件 @
01c5c43e
...
...
@@ -16,24 +16,24 @@
#include <ctime>
#include <memory>
#include <stdlib.h>
#include <string>
#include <utility>
#include <vector>
#include <stdlib.h>
#include "json/json.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "json/json.h"
#include "paddle_api.h"
// NOLINT
#include "paddle_api.h" // NOLINT
#include "include/config_parser.h"
#include "include/picodet_postprocess.h"
#include "include/preprocess_op.h"
#include "include/utils.h"
#include "include/picodet_postprocess.h"
using
namespace
paddle
::
lite_api
;
// NOLINT
using
namespace
paddle
::
lite_api
;
// NOLINT
namespace
PPShiTu
{
...
...
@@ -41,53 +41,51 @@ namespace PPShiTu {
std
::
vector
<
int
>
GenerateColorMap
(
int
num_class
);
// Visualiztion Detection Result
cv
::
Mat
VisualizeResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
PPShiTu
::
ObjectResult
>&
results
,
const
std
::
vector
<
std
::
string
>&
lables
,
const
std
::
vector
<
int
>&
colormap
,
const
bool
is_rbox
);
cv
::
Mat
VisualizeResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
PPShiTu
::
ObjectResult
>
&
results
,
const
std
::
vector
<
std
::
string
>
&
lables
,
const
std
::
vector
<
int
>
&
colormap
,
const
bool
is_rbox
);
class
ObjectDetector
{
public:
explicit
ObjectDetector
(
const
Json
::
Value
&
config
,
const
std
::
string
&
model_dir
,
int
cpu_threads
=
1
,
public:
explicit
ObjectDetector
(
const
Json
::
Value
&
config
,
const
std
::
string
&
model_dir
,
int
cpu_threads
=
1
,
const
int
batch_size
=
1
)
{
config_
.
load_config
(
config
);
printf
(
"config created
\n
"
);
preprocessor_
.
Init
(
config_
.
preprocess_info_
);
printf
(
"before object detector
\n
"
);
if
(
config
[
"Global"
][
"det_model_path"
].
as
<
std
::
string
>
().
empty
())
{
std
::
cout
<<
"Please set [det_model_path] in config file"
<<
std
::
endl
;
exit
(
-
1
);
if
(
config
[
"Global"
][
"det_model_path"
].
as
<
std
::
string
>
().
empty
())
{
std
::
cout
<<
"Please set [det_model_path] in config file"
<<
std
::
endl
;
exit
(
-
1
);
}
LoadModel
(
config
[
"Global"
][
"det_model_path"
].
as
<
std
::
string
>
(),
cpu_threads
);
printf
(
"create object detector
\n
"
);
}
LoadModel
(
config
[
"Global"
][
"det_model_path"
].
as
<
std
::
string
>
(),
cpu_threads
);
printf
(
"create object detector
\n
"
);
}
// Load Paddle inference model
void
LoadModel
(
std
::
string
model_file
,
int
num_theads
);
// Run predictor
void
Predict
(
const
std
::
vector
<
cv
::
Mat
>&
imgs
,
const
int
warmup
=
0
,
void
Predict
(
const
std
::
vector
<
cv
::
Mat
>
&
imgs
,
const
int
warmup
=
0
,
const
int
repeats
=
1
,
std
::
vector
<
PPShiTu
::
ObjectResult
>
*
result
=
nullptr
,
std
::
vector
<
int
>
*
bbox_num
=
nullptr
,
std
::
vector
<
double
>
*
times
=
nullptr
);
std
::
vector
<
PPShiTu
::
ObjectResult
>
*
result
=
nullptr
,
std
::
vector
<
int
>
*
bbox_num
=
nullptr
,
std
::
vector
<
double
>
*
times
=
nullptr
);
// Get Model Label list
const
std
::
vector
<
std
::
string
>
&
GetLabelList
()
const
{
const
std
::
vector
<
std
::
string
>
&
GetLabelList
()
const
{
return
config_
.
label_list_
;
}
private:
private:
// Preprocess image and copy data to input buffer
void
Preprocess
(
const
cv
::
Mat
&
image_mat
);
void
Preprocess
(
const
cv
::
Mat
&
image_mat
);
// Postprocess result
void
Postprocess
(
const
std
::
vector
<
cv
::
Mat
>
mats
,
std
::
vector
<
PPShiTu
::
ObjectResult
>*
result
,
std
::
vector
<
int
>
bbox_num
,
bool
is_rbox
);
std
::
vector
<
PPShiTu
::
ObjectResult
>
*
result
,
std
::
vector
<
int
>
bbox_num
,
bool
is_rbox
);
std
::
shared_ptr
<
PaddlePredictor
>
predictor_
;
Preprocessor
preprocessor_
;
...
...
@@ -96,7 +94,6 @@ class ObjectDetector {
std
::
vector
<
int
>
out_bbox_num_data_
;
float
threshold_
;
ConfigPaser
config_
;
};
}
// namespace PPShiTu
}
// namespace PPShiTu
deploy/lite_shitu/include/picodet_postprocess.h
浏览文件 @
01c5c43e
...
...
@@ -14,25 +14,23 @@
#pragma once
#include <string>
#include <vector>
#include <memory>
#include <utility>
#include <ctime>
#include <memory>
#include <numeric>
#include <string>
#include <utility>
#include <vector>
#include "include/utils.h"
namespace
PPShiTu
{
void
PicoDetPostProcess
(
std
::
vector
<
PPShiTu
::
ObjectResult
>*
results
,
std
::
vector
<
const
float
*>
outs
,
std
::
vector
<
int
>
fpn_stride
,
std
::
vector
<
float
>
im_shape
,
std
::
vector
<
float
>
scale_factor
,
float
score_threshold
=
0.3
,
float
nms_threshold
=
0.5
,
int
num_class
=
80
,
int
reg_max
=
7
);
void
PicoDetPostProcess
(
std
::
vector
<
PPShiTu
::
ObjectResult
>
*
results
,
std
::
vector
<
const
float
*>
outs
,
std
::
vector
<
int
>
fpn_stride
,
std
::
vector
<
float
>
im_shape
,
std
::
vector
<
float
>
scale_factor
,
float
score_threshold
=
0.3
,
float
nms_threshold
=
0.5
,
int
num_class
=
80
,
int
reg_max
=
7
);
}
// namespace PPShiTu
}
// namespace PPShiTu
deploy/lite_shitu/include/preprocess_op.h
浏览文件 @
01c5c43e
...
...
@@ -21,16 +21,16 @@
#include <utility>
#include <vector>
#include "json/json.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "json/json.h"
namespace
PPShiTu
{
// Object for storing all preprocessed data
class
ImageBlob
{
public:
public:
// image width and height
std
::
vector
<
float
>
im_shape_
;
// Buffer for image data after preprocessing
...
...
@@ -45,20 +45,20 @@ class ImageBlob {
// Abstraction of preprocessing opration class
class
PreprocessOp
{
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
=
0
;
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
=
0
;
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
=
0
;
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
=
0
;
};
class
InitInfo
:
public
PreprocessOp
{
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
};
class
NormalizeImage
:
public
PreprocessOp
{
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{
mean_
.
clear
();
scale_
.
clear
();
for
(
auto
tmp
:
item
[
"mean"
])
{
...
...
@@ -70,9 +70,11 @@ class NormalizeImage : public PreprocessOp {
is_scale_
=
item
[
"is_scale"
].
as
<
bool
>
();
}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
void
Run_feature
(
cv
::
Mat
*
im
,
const
std
::
vector
<
float
>
&
mean
,
const
std
::
vector
<
float
>
&
std
,
float
scale
);
private:
private:
// CHW or HWC
std
::
vector
<
float
>
mean_
;
std
::
vector
<
float
>
scale_
;
...
...
@@ -80,14 +82,15 @@ class NormalizeImage : public PreprocessOp {
};
class
Permute
:
public
PreprocessOp
{
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
void
Run_feature
(
const
cv
::
Mat
*
im
,
float
*
data
);
};
class
Resize
:
public
PreprocessOp
{
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{
interp_
=
item
[
"interp"
].
as
<
int
>
();
// max_size_ = item["target_size"].as<int>();
keep_ratio_
=
item
[
"keep_ratio"
].
as
<
bool
>
();
...
...
@@ -98,11 +101,13 @@ class Resize : public PreprocessOp {
}
// Compute best resize scale for x-dimension, y-dimension
std
::
pair
<
float
,
float
>
GenerateScale
(
const
cv
::
Mat
&
im
);
std
::
pair
<
float
,
float
>
GenerateScale
(
const
cv
::
Mat
&
im
);
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
void
Run_feature
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
resize_img
,
int
max_size_len
,
int
size
=
0
);
private:
private:
int
interp_
;
bool
keep_ratio_
;
std
::
vector
<
int
>
target_size_
;
...
...
@@ -111,46 +116,43 @@ class Resize : public PreprocessOp {
// Models with FPN need input shape % stride == 0
class
PadStride
:
public
PreprocessOp
{
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{
stride_
=
item
[
"stride"
].
as
<
int
>
();
}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
private:
private:
int
stride_
;
};
class
TopDownEvalAffine
:
public
PreprocessOp
{
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{
public:
virtual
void
Init
(
const
Json
::
Value
&
item
)
{
trainsize_
.
clear
();
for
(
auto
tmp
:
item
[
"trainsize"
])
{
trainsize_
.
emplace_back
(
tmp
.
as
<
int
>
());
}
}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
private:
private:
int
interp_
=
1
;
std
::
vector
<
int
>
trainsize_
;
};
void
CropImg
(
cv
::
Mat
&
img
,
cv
::
Mat
&
crop_img
,
std
::
vector
<
int
>&
area
,
std
::
vector
<
float
>&
center
,
std
::
vector
<
float
>&
scale
,
void
CropImg
(
cv
::
Mat
&
img
,
cv
::
Mat
&
crop_img
,
std
::
vector
<
int
>
&
area
,
std
::
vector
<
float
>
&
center
,
std
::
vector
<
float
>
&
scale
,
float
expandratio
=
0.15
);
class
Preprocessor
{
public:
void
Init
(
const
Json
::
Value
&
config_node
)
{
public:
void
Init
(
const
Json
::
Value
&
config_node
)
{
// initialize image info at first
ops_
[
"InitInfo"
]
=
std
::
make_shared
<
InitInfo
>
();
for
(
const
auto
&
item
:
config_node
)
{
for
(
const
auto
&
item
:
config_node
)
{
auto
op_name
=
item
[
"type"
].
as
<
std
::
string
>
();
ops_
[
op_name
]
=
CreateOp
(
op_name
);
...
...
@@ -158,7 +160,7 @@ class Preprocessor {
}
}
std
::
shared_ptr
<
PreprocessOp
>
CreateOp
(
const
std
::
string
&
name
)
{
std
::
shared_ptr
<
PreprocessOp
>
CreateOp
(
const
std
::
string
&
name
)
{
if
(
name
==
"DetResize"
)
{
return
std
::
make_shared
<
Resize
>
();
}
else
if
(
name
==
"DetPermute"
)
{
...
...
@@ -176,13 +178,13 @@ class Preprocessor {
return
nullptr
;
}
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
public:
public:
static
const
std
::
vector
<
std
::
string
>
RUN_ORDER
;
private:
private:
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
PreprocessOp
>>
ops_
;
};
}
// namespace PPShiTu
}
// namespace PPShiTu
deploy/lite_shitu/include/utils.h
浏览文件 @
01c5c43e
...
...
@@ -38,6 +38,23 @@ struct ObjectResult {
std
::
vector
<
RESULT
>
rec_result
;
};
void
nms
(
std
::
vector
<
ObjectResult
>
&
input_boxes
,
float
nms_threshold
,
bool
rec_nms
=
false
);
void
nms
(
std
::
vector
<
ObjectResult
>
&
input_boxes
,
float
nms_threshold
,
bool
rec_nms
=
false
);
template
<
typename
T
>
static
inline
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>
&
pair1
,
const
std
::
pair
<
float
,
T
>
&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
float
RectOverlap
(
const
ObjectResult
&
a
,
const
ObjectResult
&
b
);
inline
void
GetMaxScoreIndex
(
const
std
::
vector
<
ObjectResult
>
&
det_result
,
const
float
threshold
,
std
::
vector
<
std
::
pair
<
float
,
int
>>
&
score_index_vec
);
void
NMSBoxes
(
const
std
::
vector
<
ObjectResult
>
det_result
,
const
float
score_threshold
,
const
float
nms_threshold
,
std
::
vector
<
int
>
&
indices
);
}
// namespace PPShiTu
deploy/lite_shitu/include/vector_search.h
浏览文件 @
01c5c43e
...
...
@@ -70,4 +70,4 @@ private:
std
::
vector
<
faiss
::
Index
::
idx_t
>
I
;
SearchResult
sr
;
};
}
}
// namespace PPShiTu
deploy/lite_shitu/src/config_parser.cc
浏览文件 @
01c5c43e
...
...
@@ -29,4 +29,4 @@ void load_jsonf(std::string jsonfile, Json::Value &jsondata) {
}
}
}
// namespace PPShiTu
}
// namespace PPShiTu
deploy/lite_shitu/src/feature_extractor.cc
浏览文件 @
01c5c43e
...
...
@@ -13,24 +13,29 @@
// limitations under the License.
#include "include/feature_extractor.h"
#include <cmath>
#include <numeric>
namespace
PPShiTu
{
void
FeatureExtract
::
RunRecModel
(
const
cv
::
Mat
&
img
,
double
&
cost_time
,
void
FeatureExtract
::
RunRecModel
(
const
cv
::
Mat
&
img
,
double
&
cost_time
,
std
::
vector
<
float
>
&
feature
)
{
// Read img
cv
::
Mat
resize_image
=
ResizeImage
(
img
);
cv
::
Mat
img_fp
;
resize_image
.
convertTo
(
img_fp
,
CV_32FC3
,
scale
);
this
->
resize_op_
.
Run_feature
(
img
,
img_fp
,
this
->
size
,
this
->
size
);
this
->
normalize_op_
.
Run_feature
(
&
img_fp
,
this
->
mean
,
this
->
std
,
this
->
scale
);
std
::
vector
<
float
>
input
(
1
*
3
*
img_fp
.
rows
*
img_fp
.
cols
,
0.0
f
);
this
->
permute_op_
.
Run_feature
(
&
img_fp
,
input
.
data
());
// Prepare input data from image
std
::
unique_ptr
<
Tensor
>
input_tensor
(
std
::
move
(
this
->
predictor
->
GetInput
(
0
)));
input_tensor
->
Resize
({
1
,
3
,
img_fp
.
rows
,
img_fp
.
cols
});
input_tensor
->
Resize
({
1
,
3
,
this
->
size
,
this
->
size
});
auto
*
data0
=
input_tensor
->
mutable_data
<
float
>
();
const
float
*
dimg
=
reinterpret_cast
<
const
float
*>
(
img_fp
.
data
);
NeonMeanScale
(
dimg
,
data0
,
img_fp
.
rows
*
img_fp
.
cols
);
// const float *dimg = reinterpret_cast<const float *>(img_fp.data);
// NeonMeanScale(dimg, data0, img_fp.rows * img_fp.cols);
for
(
int
i
=
0
;
i
<
input
.
size
();
++
i
)
{
data0
[
i
]
=
input
[
i
];
}
auto
start
=
std
::
chrono
::
system_clock
::
now
();
// Run predictor
...
...
@@ -38,7 +43,7 @@ void FeatureExtract::RunRecModel(const cv::Mat &img,
// Get output and post process
std
::
unique_ptr
<
const
Tensor
>
output_tensor
(
std
::
move
(
this
->
predictor
->
GetOutput
(
0
)));
//
only one output
std
::
move
(
this
->
predictor
->
GetOutput
(
0
)));
//
only one output
auto
end
=
std
::
chrono
::
system_clock
::
now
();
auto
duration
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
microseconds
>
(
end
-
start
);
...
...
@@ -46,7 +51,7 @@ void FeatureExtract::RunRecModel(const cv::Mat &img,
std
::
chrono
::
microseconds
::
period
::
num
/
std
::
chrono
::
microseconds
::
period
::
den
;
//do postprocess
//
do postprocess
int
output_size
=
1
;
for
(
auto
dim
:
output_tensor
->
shape
())
{
output_size
*=
dim
;
...
...
@@ -54,63 +59,15 @@ void FeatureExtract::RunRecModel(const cv::Mat &img,
feature
.
resize
(
output_size
);
output_tensor
->
CopyToCpu
(
feature
.
data
());
//postprocess include sqrt or binarize.
//PostProcess
(feature);
//
postprocess include sqrt or binarize.
FeatureNorm
(
feature
);
return
;
}
// void FeatureExtract::PostProcess(std::vector<float> &feature){
// float feature_sqrt = std::sqrt(std::inner_product(
// feature.begin(), feature.end(), feature.begin(), 0.0f));
// for (int i = 0; i < feature.size(); ++i)
// feature[i] /= feature_sqrt;
// }
void
FeatureExtract
::
NeonMeanScale
(
const
float
*
din
,
float
*
dout
,
int
size
)
{
if
(
this
->
mean
.
size
()
!=
3
||
this
->
std
.
size
()
!=
3
)
{
std
::
cerr
<<
"[ERROR] mean or scale size must equal to 3
\n
"
;
exit
(
1
);
}
float32x4_t
vmean0
=
vdupq_n_f32
(
mean
[
0
]);
float32x4_t
vmean1
=
vdupq_n_f32
(
mean
[
1
]);
float32x4_t
vmean2
=
vdupq_n_f32
(
mean
[
2
]);
float32x4_t
vscale0
=
vdupq_n_f32
(
std
[
0
]);
float32x4_t
vscale1
=
vdupq_n_f32
(
std
[
1
]);
float32x4_t
vscale2
=
vdupq_n_f32
(
std
[
2
]);
float
*
dout_c0
=
dout
;
float
*
dout_c1
=
dout
+
size
;
float
*
dout_c2
=
dout
+
size
*
2
;
int
i
=
0
;
for
(;
i
<
size
-
3
;
i
+=
4
)
{
float32x4x3_t
vin3
=
vld3q_f32
(
din
);
float32x4_t
vsub0
=
vsubq_f32
(
vin3
.
val
[
0
],
vmean0
);
float32x4_t
vsub1
=
vsubq_f32
(
vin3
.
val
[
1
],
vmean1
);
float32x4_t
vsub2
=
vsubq_f32
(
vin3
.
val
[
2
],
vmean2
);
float32x4_t
vs0
=
vmulq_f32
(
vsub0
,
vscale0
);
float32x4_t
vs1
=
vmulq_f32
(
vsub1
,
vscale1
);
float32x4_t
vs2
=
vmulq_f32
(
vsub2
,
vscale2
);
vst1q_f32
(
dout_c0
,
vs0
);
vst1q_f32
(
dout_c1
,
vs1
);
vst1q_f32
(
dout_c2
,
vs2
);
din
+=
12
;
dout_c0
+=
4
;
dout_c1
+=
4
;
dout_c2
+=
4
;
}
for
(;
i
<
size
;
i
++
)
{
*
(
dout_c0
++
)
=
(
*
(
din
++
)
-
this
->
mean
[
0
])
*
this
->
std
[
0
];
*
(
dout_c1
++
)
=
(
*
(
din
++
)
-
this
->
mean
[
1
])
*
this
->
std
[
1
];
*
(
dout_c2
++
)
=
(
*
(
din
++
)
-
this
->
mean
[
2
])
*
this
->
std
[
2
];
}
}
cv
::
Mat
FeatureExtract
::
ResizeImage
(
const
cv
::
Mat
&
img
)
{
cv
::
Mat
resize_img
;
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
this
->
size
,
this
->
size
));
return
resize_img
;
}
void
FeatureExtract
::
FeatureNorm
(
std
::
vector
<
float
>
&
feature
)
{
float
feature_sqrt
=
std
::
sqrt
(
std
::
inner_product
(
feature
.
begin
(),
feature
.
end
(),
feature
.
begin
(),
0.0
f
));
for
(
int
i
=
0
;
i
<
feature
.
size
();
++
i
)
feature
[
i
]
/=
feature_sqrt
;
}
}
// namespace PPShiTu
deploy/lite_shitu/src/main.cc
浏览文件 @
01c5c43e
...
...
@@ -27,6 +27,7 @@
#include "include/feature_extractor.h"
#include "include/object_detector.h"
#include "include/preprocess_op.h"
#include "include/utils.h"
#include "include/vector_search.h"
#include "json/json.h"
...
...
@@ -158,6 +159,11 @@ int main(int argc, char **argv) {
<<
" [image_dir]>"
<<
std
::
endl
;
return
-
1
;
}
float
rec_nms_threshold
=
0.05
;
if
(
RT_Config
[
"Global"
][
"rec_nms_thresold"
].
isDouble
())
rec_nms_threshold
=
RT_Config
[
"Global"
][
"rec_nms_thresold"
].
as
<
float
>
();
// Load model and create a object detector
PPShiTu
::
ObjectDetector
det
(
RT_Config
,
RT_Config
[
"Global"
][
"det_model_path"
].
as
<
std
::
string
>
(),
...
...
@@ -174,6 +180,7 @@ int main(int argc, char **argv) {
// for vector search
std
::
vector
<
float
>
feature
;
std
::
vector
<
float
>
features
;
std
::
vector
<
int
>
indeices
;
double
rec_time
;
if
(
!
RT_Config
[
"Global"
][
"infer_imgs"
].
as
<
std
::
string
>
().
empty
()
||
!
img_dir
.
empty
())
{
...
...
@@ -208,9 +215,9 @@ int main(int argc, char **argv) {
RT_Config
[
"Global"
][
"max_det_results"
].
as
<
int
>
(),
false
,
&
det
);
// add the whole image for recognition to improve recall
//
PPShiTu::ObjectResult result_whole_img = {
//
{0, 0, srcimg.cols, srcimg.rows}, 0, 1.0};
//
det_result.push_back(result_whole_img);
PPShiTu
::
ObjectResult
result_whole_img
=
{
{
0
,
0
,
srcimg
.
cols
,
srcimg
.
rows
},
0
,
1.0
};
det_result
.
push_back
(
result_whole_img
);
// get rec result
PPShiTu
::
SearchResult
search_result
;
...
...
@@ -225,10 +232,18 @@ int main(int argc, char **argv) {
// do vectore search
search_result
=
searcher
.
Search
(
features
.
data
(),
det_result
.
size
());
for
(
int
i
=
0
;
i
<
det_result
.
size
();
++
i
)
{
det_result
[
i
].
confidence
=
search_result
.
D
[
search_result
.
return_k
*
i
];
}
NMSBoxes
(
det_result
,
searcher
.
GetThreshold
(),
rec_nms_threshold
,
indeices
);
PrintResult
(
img_path
,
det_result
,
searcher
,
search_result
);
batch_imgs
.
clear
();
det_result
.
clear
();
features
.
clear
();
feature
.
clear
();
indeices
.
clear
();
}
}
return
0
;
...
...
deploy/lite_shitu/src/object_detector.cc
浏览文件 @
01c5c43e
...
...
@@ -13,9 +13,9 @@
// limitations under the License.
#include <sstream>
// for setprecision
#include "include/object_detector.h"
#include <chrono>
#include <iomanip>
#include "include/object_detector.h"
namespace
PPShiTu
{
...
...
@@ -30,10 +30,10 @@ void ObjectDetector::LoadModel(std::string model_file, int num_theads) {
}
// Visualiztion MaskDetector results
cv
::
Mat
VisualizeResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
PPShiTu
::
ObjectResult
>
&
results
,
const
std
::
vector
<
std
::
string
>
&
lables
,
const
std
::
vector
<
int
>
&
colormap
,
cv
::
Mat
VisualizeResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
PPShiTu
::
ObjectResult
>
&
results
,
const
std
::
vector
<
std
::
string
>
&
lables
,
const
std
::
vector
<
int
>
&
colormap
,
const
bool
is_rbox
=
false
)
{
cv
::
Mat
vis_img
=
img
.
clone
();
for
(
int
i
=
0
;
i
<
results
.
size
();
++
i
)
{
...
...
@@ -75,24 +75,18 @@ cv::Mat VisualizeResult(const cv::Mat& img,
origin
.
y
=
results
[
i
].
rect
[
1
];
// Configure text background
cv
::
Rect
text_back
=
cv
::
Rect
(
results
[
i
].
rect
[
0
],
results
[
i
].
rect
[
1
]
-
text_size
.
height
,
text_size
.
width
,
text_size
.
height
);
cv
::
Rect
text_back
=
cv
::
Rect
(
results
[
i
].
rect
[
0
],
results
[
i
].
rect
[
1
]
-
text_size
.
height
,
text_size
.
width
,
text_size
.
height
);
// Draw text, and background
cv
::
rectangle
(
vis_img
,
text_back
,
roi_color
,
-
1
);
cv
::
putText
(
vis_img
,
text
,
origin
,
font_face
,
font_scale
,
cv
::
Scalar
(
255
,
255
,
255
),
thickness
);
cv
::
putText
(
vis_img
,
text
,
origin
,
font_face
,
font_scale
,
cv
::
Scalar
(
255
,
255
,
255
),
thickness
);
}
return
vis_img
;
}
void
ObjectDetector
::
Preprocess
(
const
cv
::
Mat
&
ori_im
)
{
void
ObjectDetector
::
Preprocess
(
const
cv
::
Mat
&
ori_im
)
{
// Clone the image : keep the original mat for postprocess
cv
::
Mat
im
=
ori_im
.
clone
();
// cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
...
...
@@ -100,7 +94,7 @@ void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
}
void
ObjectDetector
::
Postprocess
(
const
std
::
vector
<
cv
::
Mat
>
mats
,
std
::
vector
<
PPShiTu
::
ObjectResult
>
*
result
,
std
::
vector
<
PPShiTu
::
ObjectResult
>
*
result
,
std
::
vector
<
int
>
bbox_num
,
bool
is_rbox
=
false
)
{
result
->
clear
();
...
...
@@ -156,12 +150,11 @@ void ObjectDetector::Postprocess(const std::vector<cv::Mat> mats,
}
}
void
ObjectDetector
::
Predict
(
const
std
::
vector
<
cv
::
Mat
>&
imgs
,
const
int
warmup
,
void
ObjectDetector
::
Predict
(
const
std
::
vector
<
cv
::
Mat
>
&
imgs
,
const
int
warmup
,
const
int
repeats
,
std
::
vector
<
PPShiTu
::
ObjectResult
>
*
result
,
std
::
vector
<
int
>
*
bbox_num
,
std
::
vector
<
double
>
*
times
)
{
std
::
vector
<
PPShiTu
::
ObjectResult
>
*
result
,
std
::
vector
<
int
>
*
bbox_num
,
std
::
vector
<
double
>
*
times
)
{
auto
preprocess_start
=
std
::
chrono
::
steady_clock
::
now
();
int
batch_size
=
imgs
.
size
();
...
...
@@ -180,29 +173,29 @@ void ObjectDetector::Predict(const std::vector<cv::Mat>& imgs,
scale_factor_all
[
bs_idx
*
2
+
1
]
=
inputs_
.
scale_factor_
[
1
];
// TODO: reduce cost time
in_data_all
.
insert
(
in_data_all
.
end
(),
inputs_
.
im_data_
.
begin
(),
inputs_
.
im_data_
.
end
());
in_data_all
.
insert
(
in_data_all
.
end
(),
inputs_
.
im_data_
.
begin
(),
inputs_
.
im_data_
.
end
());
}
auto
preprocess_end
=
std
::
chrono
::
steady_clock
::
now
();
std
::
vector
<
const
float
*>
output_data_list_
;
// Prepare input tensor
auto
input_names
=
predictor_
->
GetInputNames
();
for
(
const
auto
&
tensor_name
:
input_names
)
{
for
(
const
auto
&
tensor_name
:
input_names
)
{
auto
in_tensor
=
predictor_
->
GetInputByName
(
tensor_name
);
if
(
tensor_name
==
"image"
)
{
int
rh
=
inputs_
.
in_net_shape_
[
0
];
int
rw
=
inputs_
.
in_net_shape_
[
1
];
in_tensor
->
Resize
({
batch_size
,
3
,
rh
,
rw
});
auto
*
inptr
=
in_tensor
->
mutable_data
<
float
>
();
auto
*
inptr
=
in_tensor
->
mutable_data
<
float
>
();
std
::
copy_n
(
in_data_all
.
data
(),
in_data_all
.
size
(),
inptr
);
}
else
if
(
tensor_name
==
"im_shape"
)
{
in_tensor
->
Resize
({
batch_size
,
2
});
auto
*
inptr
=
in_tensor
->
mutable_data
<
float
>
();
auto
*
inptr
=
in_tensor
->
mutable_data
<
float
>
();
std
::
copy_n
(
im_shape_all
.
data
(),
im_shape_all
.
size
(),
inptr
);
}
else
if
(
tensor_name
==
"scale_factor"
)
{
in_tensor
->
Resize
({
batch_size
,
2
});
auto
*
inptr
=
in_tensor
->
mutable_data
<
float
>
();
auto
*
inptr
=
in_tensor
->
mutable_data
<
float
>
();
std
::
copy_n
(
scale_factor_all
.
data
(),
scale_factor_all
.
size
(),
inptr
);
}
}
...
...
@@ -216,7 +209,7 @@ void ObjectDetector::Predict(const std::vector<cv::Mat>& imgs,
if
(
config_
.
arch_
==
"PicoDet"
)
{
for
(
int
j
=
0
;
j
<
output_names
.
size
();
j
++
)
{
auto
output_tensor
=
predictor_
->
GetTensor
(
output_names
[
j
]);
const
float
*
outptr
=
output_tensor
->
data
<
float
>
();
const
float
*
outptr
=
output_tensor
->
data
<
float
>
();
std
::
vector
<
int64_t
>
output_shape
=
output_tensor
->
shape
();
output_data_list_
.
push_back
(
outptr
);
}
...
...
@@ -242,7 +235,7 @@ void ObjectDetector::Predict(const std::vector<cv::Mat>& imgs,
if
(
config_
.
arch_
==
"PicoDet"
)
{
for
(
int
i
=
0
;
i
<
output_names
.
size
();
i
++
)
{
auto
output_tensor
=
predictor_
->
GetTensor
(
output_names
[
i
]);
const
float
*
outptr
=
output_tensor
->
data
<
float
>
();
const
float
*
outptr
=
output_tensor
->
data
<
float
>
();
std
::
vector
<
int64_t
>
output_shape
=
output_tensor
->
shape
();
if
(
i
==
0
)
{
num_class
=
output_shape
[
2
];
...
...
@@ -268,16 +261,15 @@ void ObjectDetector::Predict(const std::vector<cv::Mat>& imgs,
std
::
cerr
<<
"[WARNING] No object detected."
<<
std
::
endl
;
}
output_data_
.
resize
(
output_size
);
std
::
copy_n
(
output_tensor
->
mutable_data
<
float
>
(),
output_size
,
output_data_
.
data
());
std
::
copy_n
(
output_tensor
->
mutable_data
<
float
>
(),
output_size
,
output_data_
.
data
());
int
out_bbox_num_size
=
1
;
for
(
int
j
=
0
;
j
<
out_bbox_num_shape
.
size
();
++
j
)
{
out_bbox_num_size
*=
out_bbox_num_shape
[
j
];
}
out_bbox_num_data_
.
resize
(
out_bbox_num_size
);
std
::
copy_n
(
out_bbox_num
->
mutable_data
<
int
>
(),
out_bbox_num_size
,
std
::
copy_n
(
out_bbox_num
->
mutable_data
<
int
>
(),
out_bbox_num_size
,
out_bbox_num_data_
.
data
());
}
// Postprocessing result
...
...
@@ -285,9 +277,8 @@ void ObjectDetector::Predict(const std::vector<cv::Mat>& imgs,
result
->
clear
();
if
(
config_
.
arch_
==
"PicoDet"
)
{
PPShiTu
::
PicoDetPostProcess
(
result
,
output_data_list_
,
config_
.
fpn_stride_
,
inputs_
.
im_shape_
,
inputs_
.
scale_factor_
,
config_
.
nms_info_
[
"score_threshold"
].
as
<
float
>
(),
result
,
output_data_list_
,
config_
.
fpn_stride_
,
inputs_
.
im_shape_
,
inputs_
.
scale_factor_
,
config_
.
nms_info_
[
"score_threshold"
].
as
<
float
>
(),
config_
.
nms_info_
[
"nms_threshold"
].
as
<
float
>
(),
num_class
,
reg_max
);
bbox_num
->
push_back
(
result
->
size
());
}
else
{
...
...
@@ -326,4 +317,4 @@ std::vector<int> GenerateColorMap(int num_class) {
return
colormap
;
}
}
// namespace PPShiTu
}
// namespace PPShiTu
deploy/lite_shitu/src/picodet_postprocess.cc
浏览文件 @
01c5c43e
...
...
@@ -47,9 +47,9 @@ int activation_function_softmax(const _Tp *src, _Tp *dst, int length) {
}
// PicoDet decode
PPShiTu
::
ObjectResult
disPred2Bbox
(
const
float
*&
dfl_det
,
int
label
,
float
score
,
int
x
,
int
y
,
int
stride
,
std
::
vector
<
float
>
im_shape
,
int
reg_max
)
{
PPShiTu
::
ObjectResult
disPred2Bbox
(
const
float
*&
dfl_det
,
int
label
,
float
score
,
int
x
,
int
y
,
int
stride
,
std
::
vector
<
float
>
im_shape
,
int
reg_max
)
{
float
ct_x
=
(
x
+
0.5
)
*
stride
;
float
ct_y
=
(
y
+
0.5
)
*
stride
;
std
::
vector
<
float
>
dis_pred
;
...
...
deploy/lite_shitu/src/preprocess_op.cc
浏览文件 @
01c5c43e
...
...
@@ -20,7 +20,7 @@
namespace
PPShiTu
{
void
InitInfo
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
void
InitInfo
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
data
->
im_shape_
=
{
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
)};
data
->
scale_factor_
=
{
1.
,
1.
};
...
...
@@ -28,10 +28,10 @@ void InitInfo::Run(cv::Mat* im, ImageBlob* data) {
static_cast
<
float
>
(
im
->
cols
)};
}
void
NormalizeImage
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
void
NormalizeImage
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
double
e
=
1.0
;
if
(
is_scale_
)
{
e
*=
1.
/
255.0
;
e
*=
1.
/
255.0
;
}
(
*
im
).
convertTo
(
*
im
,
CV_32FC3
,
e
);
for
(
int
h
=
0
;
h
<
im
->
rows
;
h
++
)
{
...
...
@@ -46,35 +46,61 @@ void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) {
}
}
void
Permute
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
void
NormalizeImage
::
Run_feature
(
cv
::
Mat
*
im
,
const
std
::
vector
<
float
>
&
mean
,
const
std
::
vector
<
float
>
&
std
,
float
scale
)
{
(
*
im
).
convertTo
(
*
im
,
CV_32FC3
,
scale
);
for
(
int
h
=
0
;
h
<
im
->
rows
;
h
++
)
{
for
(
int
w
=
0
;
w
<
im
->
cols
;
w
++
)
{
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
-
mean
[
0
])
/
std
[
0
];
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
-
mean
[
1
])
/
std
[
1
];
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
-
mean
[
2
])
/
std
[
2
];
}
}
}
void
Permute
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
(
*
im
).
convertTo
(
*
im
,
CV_32FC3
);
int
rh
=
im
->
rows
;
int
rw
=
im
->
cols
;
int
rc
=
im
->
channels
();
(
data
->
im_data_
).
resize
(
rc
*
rh
*
rw
);
float
*
base
=
(
data
->
im_data_
).
data
();
float
*
base
=
(
data
->
im_data_
).
data
();
for
(
int
i
=
0
;
i
<
rc
;
++
i
)
{
cv
::
extractChannel
(
*
im
,
cv
::
Mat
(
rh
,
rw
,
CV_32FC1
,
base
+
i
*
rh
*
rw
),
i
);
}
}
void
Resize
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
void
Permute
::
Run_feature
(
const
cv
::
Mat
*
im
,
float
*
data
)
{
int
rh
=
im
->
rows
;
int
rw
=
im
->
cols
;
int
rc
=
im
->
channels
();
for
(
int
i
=
0
;
i
<
rc
;
++
i
)
{
cv
::
extractChannel
(
*
im
,
cv
::
Mat
(
rh
,
rw
,
CV_32FC1
,
data
+
i
*
rh
*
rw
),
i
);
}
}
void
Resize
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
auto
resize_scale
=
GenerateScale
(
*
im
);
data
->
im_shape_
=
{
static_cast
<
float
>
(
im
->
cols
*
resize_scale
.
first
),
static_cast
<
float
>
(
im
->
rows
*
resize_scale
.
second
)};
data
->
in_net_shape_
=
{
static_cast
<
float
>
(
im
->
cols
*
resize_scale
.
first
),
static_cast
<
float
>
(
im
->
rows
*
resize_scale
.
second
)};
cv
::
resize
(
*
im
,
*
im
,
cv
::
Size
(),
resize_scale
.
first
,
resize_scale
.
second
,
interp_
);
cv
::
resize
(
*
im
,
*
im
,
cv
::
Size
(),
resize_scale
.
first
,
resize_scale
.
second
,
interp_
);
data
->
im_shape_
=
{
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
),
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
),
};
data
->
scale_factor_
=
{
resize_scale
.
second
,
resize_scale
.
first
,
resize_scale
.
second
,
resize_scale
.
first
,
};
}
std
::
pair
<
float
,
float
>
Resize
::
GenerateScale
(
const
cv
::
Mat
&
im
)
{
std
::
pair
<
float
,
float
>
Resize
::
GenerateScale
(
const
cv
::
Mat
&
im
)
{
std
::
pair
<
float
,
float
>
resize_scale
;
int
origin_w
=
im
.
cols
;
int
origin_h
=
im
.
rows
;
...
...
@@ -101,7 +127,30 @@ std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) {
return
resize_scale
;
}
void
PadStride
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
void
Resize
::
Run_feature
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
resize_img
,
int
resize_short_size
,
int
size
)
{
int
resize_h
=
0
;
int
resize_w
=
0
;
if
(
size
>
0
)
{
resize_h
=
size
;
resize_w
=
size
;
}
else
{
int
w
=
img
.
cols
;
int
h
=
img
.
rows
;
float
ratio
=
1.
f
;
if
(
h
<
w
)
{
ratio
=
float
(
resize_short_size
)
/
float
(
h
);
}
else
{
ratio
=
float
(
resize_short_size
)
/
float
(
w
);
}
resize_h
=
round
(
float
(
h
)
*
ratio
);
resize_w
=
round
(
float
(
w
)
*
ratio
);
}
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
resize_w
,
resize_h
));
}
void
PadStride
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
if
(
stride_
<=
0
)
{
return
;
}
...
...
@@ -110,48 +159,44 @@ void PadStride::Run(cv::Mat* im, ImageBlob* data) {
int
rw
=
im
->
cols
;
int
nh
=
(
rh
/
stride_
)
*
stride_
+
(
rh
%
stride_
!=
0
)
*
stride_
;
int
nw
=
(
rw
/
stride_
)
*
stride_
+
(
rw
%
stride_
!=
0
)
*
stride_
;
cv
::
copyMakeBorder
(
*
im
,
*
im
,
0
,
nh
-
rh
,
0
,
nw
-
rw
,
cv
::
BORDER_CONSTANT
,
cv
::
Scalar
(
0
));
cv
::
copyMakeBorder
(
*
im
,
*
im
,
0
,
nh
-
rh
,
0
,
nw
-
rw
,
cv
::
BORDER_CONSTANT
,
cv
::
Scalar
(
0
));
data
->
in_net_shape_
=
{
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
),
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
),
};
}
void
TopDownEvalAffine
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
void
TopDownEvalAffine
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
cv
::
resize
(
*
im
,
*
im
,
cv
::
Size
(
trainsize_
[
0
],
trainsize_
[
1
]),
0
,
0
,
interp_
);
// todo: Simd::ResizeBilinear();
data
->
in_net_shape_
=
{
static_cast
<
float
>
(
trainsize_
[
1
]),
static_cast
<
float
>
(
trainsize_
[
0
]),
static_cast
<
float
>
(
trainsize_
[
1
]),
static_cast
<
float
>
(
trainsize_
[
0
]),
};
}
// Preprocessor op running order
const
std
::
vector
<
std
::
string
>
Preprocessor
::
RUN_ORDER
=
{
"InitInfo"
,
"DetTopDownEvalAffine"
,
"DetResize"
,
"DetNormalizeImage"
,
"DetPadStride"
,
"DetPermute"
};
void
Preprocessor
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
for
(
const
auto
&
name
:
RUN_ORDER
)
{
const
std
::
vector
<
std
::
string
>
Preprocessor
::
RUN_ORDER
=
{
"InitInfo"
,
"DetTopDownEvalAffine"
,
"DetResize"
,
"DetNormalizeImage"
,
"DetPadStride"
,
"DetPermute"
};
void
Preprocessor
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
for
(
const
auto
&
name
:
RUN_ORDER
)
{
if
(
ops_
.
find
(
name
)
!=
ops_
.
end
())
{
ops_
[
name
]
->
Run
(
im
,
data
);
}
}
}
void
CropImg
(
cv
::
Mat
&
img
,
cv
::
Mat
&
crop_img
,
std
::
vector
<
int
>&
area
,
std
::
vector
<
float
>&
center
,
std
::
vector
<
float
>&
scale
,
void
CropImg
(
cv
::
Mat
&
img
,
cv
::
Mat
&
crop_img
,
std
::
vector
<
int
>
&
area
,
std
::
vector
<
float
>
&
center
,
std
::
vector
<
float
>
&
scale
,
float
expandratio
)
{
int
crop_x1
=
std
::
max
(
0
,
area
[
0
]);
int
crop_y1
=
std
::
max
(
0
,
area
[
1
]);
int
crop_x2
=
std
::
min
(
img
.
cols
-
1
,
area
[
2
]);
int
crop_y2
=
std
::
min
(
img
.
rows
-
1
,
area
[
3
]);
int
center_x
=
(
crop_x1
+
crop_x2
)
/
2.
;
int
center_y
=
(
crop_y1
+
crop_y2
)
/
2.
;
int
half_h
=
(
crop_y2
-
crop_y1
)
/
2.
;
...
...
@@ -182,4 +227,4 @@ void CropImg(cv::Mat& img,
scale
.
emplace_back
((
crop_y2
-
crop_y1
));
}
}
// namespace PPShiTu
}
// namespace PPShiTu
deploy/lite_shitu/src/utils.cc
浏览文件 @
01c5c43e
...
...
@@ -54,4 +54,53 @@ void nms(std::vector<ObjectResult> &input_boxes, float nms_threshold,
}
}
float
RectOverlap
(
const
ObjectResult
&
a
,
const
ObjectResult
&
b
)
{
float
Aa
=
(
a
.
rect
[
2
]
-
a
.
rect
[
0
]
+
1
)
*
(
a
.
rect
[
3
]
-
a
.
rect
[
1
]
+
1
);
float
Ab
=
(
b
.
rect
[
2
]
-
b
.
rect
[
0
]
+
1
)
*
(
b
.
rect
[
3
]
-
b
.
rect
[
1
]
+
1
);
int
iou_w
=
max
(
min
(
a
.
rect
[
2
],
b
.
rect
[
2
])
-
max
(
a
.
rect
[
0
],
b
.
rect
[
0
])
+
1
,
0
);
int
iou_h
=
max
(
min
(
a
.
rect
[
3
],
b
.
rect
[
3
])
-
max
(
a
.
rect
[
1
],
b
.
rect
[
1
])
+
1
,
0
);
float
Aab
=
iou_w
*
iou_h
;
return
Aab
/
(
Aa
+
Ab
-
Aab
);
}
inline
void
GetMaxScoreIndex
(
const
std
::
vector
<
ObjectResult
>
&
det_result
,
const
float
threshold
,
std
::
vector
<
std
::
pair
<
float
,
int
>>
&
score_index_vec
)
{
// Generate index score pairs.
for
(
size_t
i
=
0
;
i
<
det_result
.
size
();
++
i
)
{
if
(
det_result
[
i
].
confidence
>
threshold
)
{
score_index_vec
.
push_back
(
std
::
make_pair
(
det_result
[
i
].
confidence
,
i
));
}
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
score_index_vec
.
begin
(),
score_index_vec
.
end
(),
SortScorePairDescend
<
int
>
);
}
void
NMSBoxes
(
const
std
::
vector
<
ObjectResult
>
det_result
,
const
float
score_threshold
,
const
float
nms_threshold
,
std
::
vector
<
int
>
&
indices
)
{
int
a
=
1
;
// Get top_k scores (with corresponding indices).
std
::
vector
<
std
::
pair
<
float
,
int
>>
score_index_vec
;
GetMaxScoreIndex
(
det_result
,
score_threshold
,
score_index_vec
);
// Do nms
indices
.
clear
();
for
(
size_t
i
=
0
;
i
<
score_index_vec
.
size
();
++
i
)
{
const
int
idx
=
score_index_vec
[
i
].
second
;
bool
keep
=
true
;
for
(
int
k
=
0
;
k
<
(
int
)
indices
.
size
()
&&
keep
;
++
k
)
{
const
int
kept_idx
=
indices
[
k
];
float
overlap
=
RectOverlap
(
det_result
[
idx
],
det_result
[
kept_idx
]);
keep
=
overlap
<=
nms_threshold
;
}
if
(
keep
)
indices
.
push_back
(
idx
);
}
}
}
// namespace PPShiTu
deploy/lite_shitu/src/vector_search.cc
浏览文件 @
01c5c43e
...
...
@@ -64,4 +64,4 @@ const SearchResult &VectorSearch::Search(float *feature, int query_number) {
const
std
::
string
&
VectorSearch
::
GetLabel
(
faiss
::
Index
::
idx_t
ind
)
{
return
this
->
id_map
.
at
(
ind
);
}
}
\ No newline at end of file
}
// namespace PPShiTu
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录