classification.py 4.3 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import platform
import paddle

from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger


W
weishengyu 已提交
25
def classification_eval(engine, epoch_id=0):
D
dongshuilong 已提交
26 27 28 29 30 31 32
    output_info = dict()
    time_info = {
        "batch_cost": AverageMeter(
            "batch_cost", '.5f', postfix=" s,"),
        "reader_cost": AverageMeter(
            "reader_cost", ".5f", postfix=" s,"),
    }
W
weishengyu 已提交
33
    print_batch_step = engine.config["Global"]["print_batch_step"]
D
dongshuilong 已提交
34 35 36

    metric_key = None
    tic = time.time()
W
weishengyu 已提交
37 38 39
    max_iter = len(engine.eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(engine.eval_dataloader)
    for iter_id, batch in enumerate(engine.eval_dataloader):
D
dongshuilong 已提交
40 41 42 43 44
        if iter_id >= max_iter:
            break
        if iter_id == 5:
            for key in time_info:
                time_info[key].reset()
W
weishengyu 已提交
45
        if engine.use_dali:
D
dongshuilong 已提交
46 47 48 49 50 51 52
            batch = [
                paddle.to_tensor(batch[0]['data']),
                paddle.to_tensor(batch[0]['label'])
            ]
        time_info["reader_cost"].update(time.time() - tic)
        batch_size = batch[0].shape[0]
        batch[0] = paddle.to_tensor(batch[0]).astype("float32")
C
cuicheng01 已提交
53
        if not engine.config["Global"].get("use_multilabel", False):
C
cuicheng01 已提交
54
            batch[1] = batch[1].reshape([-1, 1]).astype("int64")
D
dongshuilong 已提交
55
        # image input
W
weishengyu 已提交
56
        out = engine.model(batch[0])
D
dongshuilong 已提交
57
        # calc loss
W
weishengyu 已提交
58 59
        if engine.eval_loss_func is not None:
            loss_dict = engine.eval_loss_func(out, batch[1])
D
dongshuilong 已提交
60 61 62 63 64
            for key in loss_dict:
                if key not in output_info:
                    output_info[key] = AverageMeter(key, '7.5f')
                output_info[key].update(loss_dict[key].numpy()[0], batch_size)
        # calc metric
W
weishengyu 已提交
65 66
        if engine.eval_metric_func is not None:
            metric_dict = engine.eval_metric_func(out, batch[1])
D
dongshuilong 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
            if paddle.distributed.get_world_size() > 1:
                for key in metric_dict:
                    paddle.distributed.all_reduce(
                        metric_dict[key], op=paddle.distributed.ReduceOp.SUM)
                    metric_dict[key] = metric_dict[
                        key] / paddle.distributed.get_world_size()
            for key in metric_dict:
                if metric_key is None:
                    metric_key = key
                if key not in output_info:
                    output_info[key] = AverageMeter(key, '7.5f')

                output_info[key].update(metric_dict[key].numpy()[0],
                                        batch_size)

        time_info["batch_cost"].update(time.time() - tic)

        if iter_id % print_batch_step == 0:
            time_msg = "s, ".join([
                "{}: {:.5f}".format(key, time_info[key].avg)
                for key in time_info
            ])

            ips_msg = "ips: {:.5f} images/sec".format(
                batch_size / time_info["batch_cost"].avg)

            metric_msg = ", ".join([
                "{}: {:.5f}".format(key, output_info[key].val)
                for key in output_info
            ])
            logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
                epoch_id, iter_id,
W
weishengyu 已提交
99
                len(engine.eval_dataloader), metric_msg, time_msg, ips_msg))
D
dongshuilong 已提交
100 101

        tic = time.time()
W
weishengyu 已提交
102 103
    if engine.use_dali:
        engine.eval_dataloader.reset()
D
dongshuilong 已提交
104 105 106 107 108 109
    metric_msg = ", ".join([
        "{}: {:.5f}".format(key, output_info[key].avg) for key in output_info
    ])
    logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))

    # do not try to save best eval.model
W
weishengyu 已提交
110
    if engine.eval_metric_func is None:
D
dongshuilong 已提交
111 112 113
        return -1
    # return 1st metric in the dict
    return output_info[metric_key].avg