classification.py 4.3 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import platform
import paddle

from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger


def classification_eval(evaler, epoch_id=0):
    output_info = dict()
    time_info = {
        "batch_cost": AverageMeter(
            "batch_cost", '.5f', postfix=" s,"),
        "reader_cost": AverageMeter(
            "reader_cost", ".5f", postfix=" s,"),
    }
    print_batch_step = evaler.config["Global"]["print_batch_step"]

    metric_key = None
    tic = time.time()
    eval_dataloader = evaler.eval_dataloader if evaler.use_dali else evaler.eval_dataloader(
    )
    max_iter = len(evaler.eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(evaler.eval_dataloader)
    for iter_id, batch in enumerate(eval_dataloader):
        if iter_id >= max_iter:
            break
        if iter_id == 5:
            for key in time_info:
                time_info[key].reset()
        if evaler.use_dali:
            batch = [
                paddle.to_tensor(batch[0]['data']),
                paddle.to_tensor(batch[0]['label'])
            ]
        time_info["reader_cost"].update(time.time() - tic)
        batch_size = batch[0].shape[0]
        batch[0] = paddle.to_tensor(batch[0]).astype("float32")
        batch[1] = batch[1].reshape([-1, 1]).astype("int64")
        # image input
        out = evaler.model(batch[0])
        # calc loss
        if evaler.eval_loss_func is not None:
D
dongshuilong 已提交
60
            loss_dict = evaler.eval_loss_func(out, batch[1])
D
dongshuilong 已提交
61 62 63 64 65 66
            for key in loss_dict:
                if key not in output_info:
                    output_info[key] = AverageMeter(key, '7.5f')
                output_info[key].update(loss_dict[key].numpy()[0], batch_size)
        # calc metric
        if evaler.eval_metric_func is not None:
D
dongshuilong 已提交
67
            metric_dict = evaler.eval_metric_func(out, batch[1])
D
dongshuilong 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            if paddle.distributed.get_world_size() > 1:
                for key in metric_dict:
                    paddle.distributed.all_reduce(
                        metric_dict[key], op=paddle.distributed.ReduceOp.SUM)
                    metric_dict[key] = metric_dict[
                        key] / paddle.distributed.get_world_size()
            for key in metric_dict:
                if metric_key is None:
                    metric_key = key
                if key not in output_info:
                    output_info[key] = AverageMeter(key, '7.5f')

                output_info[key].update(metric_dict[key].numpy()[0],
                                        batch_size)

        time_info["batch_cost"].update(time.time() - tic)

        if iter_id % print_batch_step == 0:
            time_msg = "s, ".join([
                "{}: {:.5f}".format(key, time_info[key].avg)
                for key in time_info
            ])

            ips_msg = "ips: {:.5f} images/sec".format(
                batch_size / time_info["batch_cost"].avg)

            metric_msg = ", ".join([
                "{}: {:.5f}".format(key, output_info[key].val)
                for key in output_info
            ])
            logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
                epoch_id, iter_id,
                len(evaler.eval_dataloader), metric_msg, time_msg, ips_msg))

        tic = time.time()
    if evaler.use_dali:
        evaler.eval_dataloader.reset()
    metric_msg = ", ".join([
        "{}: {:.5f}".format(key, output_info[key].avg) for key in output_info
    ])
    logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))

    # do not try to save best eval.model
    if evaler.eval_metric_func is None:
        return -1
    # return 1st metric in the dict
    return output_info[metric_key].avg