README.md 41.3 KB
Newer Older
1
[简体中文](README_cn.md) | English
D
dyning 已提交
2

3
# PaddleClas
D
dyning 已提交
4

5
## Introduction
D
dyning 已提交
6

7
PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios.
D
dyning 已提交
8

9
**Recent update**
10
- 2020.12.06 Add `SE_HRNet_W64_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 84.75%.
11
- 2020.11.23 Add `GhostNet_x1_3_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 79.38%.
12
- 2020.11.09 Add `InceptionV3` architecture and pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 79.1%.
littletomatodonkey's avatar
littletomatodonkey 已提交
13
- 2020.09.17 Add `Res2Net50_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.1%. Add `Res2Net101_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.9%.
14 15 16 17 18 19
- 2020.10.12 Add Paddle-Lite demo。
- 2020.10.10 Add cpp inference demo and improve FAQ tutorial.
- 2020.09.17 Add `HRNet_W48_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.62%. Add `ResNet34_vd_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 79.72%.
- 2020.09.07 Add `HRNet_W18_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 81.16%.
- 2020.07.14 Add `Res2Net200_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 85.13%. Add `Fix_ResNet50_vd_ssld_v2` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 84.00%.
- [more](./docs/en/update_history_en.md)
D
dyning 已提交
20

D
dyning 已提交
21

22
## Features
D
dyning 已提交
23

L
littletomatodonkey 已提交
24
- Rich model zoo. Based on the ImageNet-1k classification dataset, PaddleClas provides 29 series of classification network structures and training configurations, 134 models' pretrained weights and their evaluation metrics.
D
dyning 已提交
25

26
- SSLD Knowledge Distillation. Based on this SSLD distillation strategy, the top-1 acc of the distilled model is generally increased by more than 3%.
D
dyning 已提交
27

28
- Data augmentation: PaddleClas provides detailed introduction of 8 data augmentation algorithms such as AutoAugment, Cutout, Cutmix, code reproduction and effect evaluation in a unified experimental environment.
D
dyning 已提交
29

30
- Pretrained model with 100,000 categories: Based on `ResNet50_vd` model, Baidu open sourced the `ResNet50_vd` pretrained model trained on a 100,000-category dataset. In some practical scenarios, the accuracy based on the pretrained weights can be increased by up to 30%.
D
dyning 已提交
31

32
- A variety of training modes, including multi-machine training, mixed precision training, etc.
D
dyning 已提交
33

34
- A variety of inference and deployment solutions, including TensorRT inference, Paddle-Lite inference, model service deployment, model quantification, Paddle Hub, etc.
D
dyning 已提交
35

36
- Support Linux, Windows, macOS and other systems.
D
dyning 已提交
37

D
dyning 已提交
38

L
littletomatodonkey 已提交
39 40
## Community

L
littletomatodonkey 已提交
41
* Scan the QR code below with your Wechat and send the message `分类` out, then you will be invited into the official technical exchange group.
L
littletomatodonkey 已提交
42

L
littletomatodonkey 已提交
43 44 45
<div align="center">
<img src="./docs/images/joinus.png"  width = "200" height = "200" />
</div>
L
littletomatodonkey 已提交
46

L
littletomatodonkey 已提交
47
* You can also scan the QQ group QR code to enter the PaddleClas QQ group. Look forward to your participation.
L
littletomatodonkey 已提交
48 49 50 51 52

<div align="center">
<img src="./docs/images/qq_group.png"  width = "200" />
</div>

L
littletomatodonkey 已提交
53

54
## Tutorials
littletomatodonkey's avatar
littletomatodonkey 已提交
55

56 57 58 59 60 61 62 63 64 65 66 67
- [Installation](./docs/en/tutorials/install_en.md)
- [Quick start PaddleClas in 30 minutes](./docs/en/tutorials/quick_start_en.md)
- [Model introduction and model zoo](./docs/en/models/models_intro_en.md)
    - [Model zoo overview](#Model_zoo_overview)
    - [ResNet and Vd series](#ResNet_and_Vd_series)
    - [Mobile series](#Mobile_series)
    - [SEResNeXt and Res2Net series](#SEResNeXt_and_Res2Net_series)
    - [DPN and DenseNet series](#DPN_and_DenseNet_series)
    - [HRNet series](#HRNet_series)
    - [Inception series](#Inception_series)
    - [EfficientNet and ResNeXt101_wsl series](#EfficientNet_and_ResNeXt101_wsl_series)
    - [ResNeSt and RegNet series](#ResNeSt_and_RegNet_series)
L
littletomatodonkey 已提交
68
    - HS-ResNet: arxiv link: [https://arxiv.org/pdf/2010.07621.pdf](https://arxiv.org/pdf/2010.07621.pdf). Code and models are coming soon!
69 70 71 72
- Model training/evaluation
    - [Data preparation](./docs/en/tutorials/data_en.md)
    - [Model training and finetuning](./docs/en/tutorials/getting_started_en.md)
    - [Model evaluation](./docs/en/tutorials/getting_started_en.md)
L
littletomatodonkey 已提交
73
    - [Configuration details](./docs/en/tutorials/config_en.md)
74
- Model prediction/inference
L
littletomatodonkey 已提交
75 76
    - [Prediction based on training engine](./docs/en/tutorials/getting_started_en.md)
    - [Python inference](./docs/en/tutorials/getting_started_en.md)
77 78
    - [C++ inference](./deploy/cpp_infer/readme_en.md)
    - [Serving deployment](./docs/en/extension/paddle_serving_en.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
79
    - [Mobile](./deploy/lite/readme_en.md)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    - [Model Quantization and Compression](docs/en/extension/paddle_quantization_en.md)
- Advanced tutorials
    - [Knowledge distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md)
    - [Data augmentation](./docs/en/advanced_tutorials/image_augmentation/ImageAugment_en.md)
- Applications
    - [Transfer learning](./docs/en/application/transfer_learning_en.md)
    - [Pretrained model with 100,000 categories](./docs/en/application/transfer_learning_en.md)
    - [Generic object detection](./docs/en/application/object_detection_en.md)
- FAQ
    - [General image classification problems](./docs/en/faq_en.md)
    - [PaddleClas FAQ](./docs/en/faq_en.md)
- [Competition support](./docs/en/competition_support_en.md)
- [License](#License)
- [Contribution](#Contribution)


<a name="Model_zoo_overview"></a>
### Model zoo overview

Based on the ImageNet-1k classification dataset, the 24 classification network structures supported by PaddleClas and the corresponding 122 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. The  evaluation environment is as follows.

* CPU evaluation environment is based on Snapdragon 855 (SD855).
* The GPU evaluation speed is measured by running 500 times under the FP32+TensorRT configuration (excluding the warmup time of the first 10 times).


Curves of accuracy to the inference time of common server-side models are shown as follows.

littletomatodonkey's avatar
littletomatodonkey 已提交
107
![](./docs/images/models/T4_benchmark/t4.fp32.bs1.main_fps_top1.png)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124


Curves of accuracy to the inference time and storage size of common mobile-side models are shown as follows.

![](./docs/images/models/mobile_arm_storage.png)

![](./docs/images/models/mobile_arm_top1.png)



<a name="ResNet_and_Vd_series"></a>
### ResNet and Vd series

Accuracy and inference time metrics of ResNet and Vd series models are shown as follows. More detailed information can be refered to [ResNet and Vd series tutorial](./docs/en/models/ResNet_and_vd_en.md).

| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|
L
littletomatodonkey 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
| ResNet18            | 0.7098    | 0.8992    | 1.45606               | 3.56305              | 3.66     | 11.69     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams)            |
| ResNet18_vd         | 0.7226    | 0.9080    | 1.54557               | 3.85363              | 4.14     | 11.71     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams)         |
| ResNet34            | 0.7457    | 0.9214    | 2.34957               | 5.89821              | 7.36     | 21.8      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams)            |
| ResNet34_vd         | 0.7598    | 0.9298    | 2.43427               | 6.22257              | 7.39     | 21.82     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams)         |
| ResNet34_vd_ssld         | 0.7972    | 0.9490    | 2.43427               | 6.22257              | 7.39     | 21.82     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_ssld_pretrained.pdparams)         |
| ResNet50            | 0.7650    | 0.9300    | 3.47712               | 7.84421              | 8.19     | 25.56     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams)            |
| ResNet50_vc         | 0.7835    | 0.9403    | 3.52346               | 8.10725              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams)         |
| ResNet50_vd         | 0.7912    | 0.9444    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams)         |
| ResNet50_vd_v2      | 0.7984    | 0.9493    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_v2_pretrained.pdparams)      |
| ResNet101           | 0.7756    | 0.9364    | 6.07125               | 13.40573             | 15.52    | 44.55     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams)           |
| ResNet101_vd        | 0.8017    | 0.9497    | 6.11704               | 13.76222             | 16.1     | 44.57     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams)        |
| ResNet152           | 0.7826    | 0.9396    | 8.50198               | 19.17073             | 23.05    | 60.19     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams)           |
| ResNet152_vd        | 0.8059    | 0.9530    | 8.54376               | 19.52157             | 23.53    | 60.21     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams)        |
| ResNet200_vd        | 0.8093    | 0.9533    | 10.80619              | 25.01731             | 30.53    | 74.74     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams)        |
| ResNet50_vd_<br>ssld    | 0.8239    | 0.9610    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams)    |
| ResNet50_vd_<br>ssld_v2 | 0.8300    | 0.9640    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_v2_pretrained.pdparams) |
| ResNet101_vd_<br>ssld   | 0.8373    | 0.9669    | 6.11704               | 13.76222             | 16.1     | 44.57     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_ssld_pretrained.pdparams)   |
142 143 144 145 146 147 148 149 150


<a name="Mobile_series"></a>
### Mobile series

Accuracy and inference time metrics of Mobile series models are shown as follows. More detailed information can be refered to [Mobile series tutorial](./docs/en/models/Mobile_en.md).

| Model                              | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | Model storage size(M) | Download Address                                                                                                      |
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
L
littletomatodonkey 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
| MobileNetV1_<br>x0_25                | 0.5143    | 0.7546    | 3.21985                | 0.07     | 0.46      | 1.9     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_25_pretrained.pdparams)                |
| MobileNetV1_<br>x0_5                 | 0.6352    | 0.8473    | 9.579599               | 0.28     | 1.31      | 5.2     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_5_pretrained.pdparams)                 |
| MobileNetV1_<br>x0_75                | 0.6881    | 0.8823    | 19.436399              | 0.63     | 2.55      | 10      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_75_pretrained.pdparams)                |
| MobileNetV1                      | 0.7099    | 0.8968    | 32.523048              | 1.11     | 4.19      | 16      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_pretrained.pdparams)                      |
| MobileNetV1_<br>ssld                 | 0.7789    | 0.9394    | 32.523048              | 1.11     | 4.19      | 16      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_ssld_pretrained.pdparams)                 |
| MobileNetV2_<br>x0_25                | 0.5321    | 0.7652    | 3.79925                | 0.05     | 1.5       | 6.1     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams)                |
| MobileNetV2_<br>x0_5                 | 0.6503    | 0.8572    | 8.7021                 | 0.17     | 1.93      | 7.8     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams)                 |
| MobileNetV2_<br>x0_75                | 0.6983    | 0.8901    | 15.531351              | 0.35     | 2.58      | 10      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams)                |
| MobileNetV2                      | 0.7215    | 0.9065    | 23.317699              | 0.6      | 3.44      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams)                      |
| MobileNetV2_<br>x1_5                 | 0.7412    | 0.9167    | 45.623848              | 1.32     | 6.76      | 26      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams)                 |
| MobileNetV2_<br>x2_0                 | 0.7523    | 0.9258    | 74.291649              | 2.32     | 11.13     | 43      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams)                 |
| MobileNetV2_<br>ssld                 | 0.7674    | 0.9339    | 23.317699              | 0.6      | 3.44      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams)                 |
| MobileNetV3_<br>large_x1_25          | 0.7641    | 0.9295    | 28.217701              | 0.714    | 7.44      | 29      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_25_pretrained.pdparams)          |
| MobileNetV3_<br>large_x1_0           | 0.7532    | 0.9231    | 19.30835               | 0.45     | 5.47      | 21      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams)           |
| MobileNetV3_<br>large_x0_75          | 0.7314    | 0.9108    | 13.5646                | 0.296    | 3.91      | 16      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_75_pretrained.pdparams)          |
| MobileNetV3_<br>large_x0_5           | 0.6924    | 0.8852    | 7.49315                | 0.138    | 2.67      | 11      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams)           |
| MobileNetV3_<br>large_x0_35          | 0.6432    | 0.8546    | 5.13695                | 0.077    | 2.1       | 8.6     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_35_pretrained.pdparams)          |
| MobileNetV3_<br>small_x1_25          | 0.7067    | 0.8951    | 9.2745                 | 0.195    | 3.62      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_25_pretrained.pdparams)          |
| MobileNetV3_<br>small_x1_0           | 0.6824    | 0.8806    | 6.5463                 | 0.123    | 2.94      | 12      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_pretrained.pdparams)           |
| MobileNetV3_<br>small_x0_75          | 0.6602    | 0.8633    | 5.28435                | 0.088    | 2.37      | 9.6     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_75_pretrained.pdparams)          |
| MobileNetV3_<br>small_x0_5           | 0.5921    | 0.8152    | 3.35165                | 0.043    | 1.9       | 7.8     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_5_pretrained.pdparams)           |
| MobileNetV3_<br>small_x0_35          | 0.5303    | 0.7637    | 2.6352                 | 0.026    | 1.66      | 6.9     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_pretrained.pdparams)          |
| MobileNetV3_<br>small_x0_35_ssld          | 0.5555    | 0.7771    | 2.6352                 | 0.026    | 1.66      | 6.9     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_ssld_pretrained.pdparams)          |
| MobileNetV3_<br>large_x1_0_ssld      | 0.7896    | 0.9448    | 19.30835               | 0.45     | 5.47      | 21      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_ssld_pretrained.pdparams)      |
| MobileNetV3_small_<br>x1_0_ssld      | 0.7129    | 0.9010    | 6.5463                 | 0.123    | 2.94      | 12      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_ssld_pretrained.pdparams)      |
| ShuffleNetV2                     | 0.6880    | 0.8845    | 10.941                 | 0.28     | 2.26      | 9       | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams)                     |
| ShuffleNetV2_<br>x0_25               | 0.4990    | 0.7379    | 2.329                  | 0.03     | 0.6       | 2.7     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams)               |
| ShuffleNetV2_<br>x0_33               | 0.5373    | 0.7705    | 2.64335                | 0.04     | 0.64      | 2.8     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams)               |
| ShuffleNetV2_<br>x0_5                | 0.6032    | 0.8226    | 4.2613                 | 0.08     | 1.36      | 5.6     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams)                |
| ShuffleNetV2_<br>x1_5                | 0.7163    | 0.9015    | 19.3522                | 0.58     | 3.47      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams)                |
| ShuffleNetV2_<br>x2_0                | 0.7315    | 0.9120    | 34.770149              | 1.12     | 7.32      | 28      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams)                |
| ShuffleNetV2_<br>swish               | 0.7003    | 0.8917    | 16.023151              | 0.29     | 2.26      | 9.1     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams)               |
| GhostNet_<br>x0_5                    | 0.6688    | 0.8695    | 5.7143                 | 0.082    | 2.6       | 10      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams)               |
| GhostNet_<br>x1_0                    | 0.7402    | 0.9165    | 13.5587                | 0.294    | 5.2       | 20      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams)               |
| GhostNet_<br>x1_3                    | 0.7579    | 0.9254    | 19.9825                | 0.44     | 7.3       | 29      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams)               |
| GhostNet_<br>x1_3_ssld                    | 0.7938    | 0.9449    | 19.9825                | 0.44     | 7.3       | 29      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams)               |
187 188 189 190 191 192 193 194 195 196


<a name="SEResNeXt_and_Res2Net_series"></a>
### SEResNeXt and Res2Net series

Accuracy and inference time metrics of SEResNeXt and Res2Net series models are shown as follows. More detailed information can be refered to [SEResNext and_Res2Net series tutorial](./docs/en/models/SEResNext_and_Res2Net_en.md).


| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
L
littletomatodonkey 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
| Res2Net50_<br>26w_4s          | 0.7933    | 0.9457    | 4.47188               | 9.65722              | 8.52     | 25.7      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams)          |
| Res2Net50_vd_<br>26w_4s       | 0.7975    | 0.9491    | 4.52712               | 9.93247              | 8.37     | 25.06     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams)       |
| Res2Net50_<br>14w_8s          | 0.7946    | 0.9470    | 5.4026                | 10.60273             | 9.01     | 25.72     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams)          |
| Res2Net101_vd_<br>26w_4s      | 0.8064    | 0.9522    | 8.08729               | 17.31208             | 16.67    | 45.22     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams)      |
| Res2Net200_vd_<br>26w_4s      | 0.8121    | 0.9571    | 14.67806              | 32.35032             | 31.49    | 76.21     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams)      |
| Res2Net200_vd_<br>26w_4s_ssld | 0.8513    | 0.9742    | 14.67806              | 32.35032             | 31.49    | 76.21     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) |
| ResNeXt50_<br>32x4d           | 0.7775    | 0.9382    | 7.56327               | 10.6134              | 8.02     | 23.64     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams)           |
| ResNeXt50_vd_<br>32x4d        | 0.7956    | 0.9462    | 7.62044               | 11.03385             | 8.5      | 23.66     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams)        |
| ResNeXt50_<br>64x4d           | 0.7843    | 0.9413    | 13.80962              | 18.4712              | 15.06    | 42.36     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams)           |
| ResNeXt50_vd_<br>64x4d        | 0.8012    | 0.9486    | 13.94449              | 18.88759             | 15.54    | 42.38     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams)        |
| ResNeXt101_<br>32x4d          | 0.7865    | 0.9419    | 16.21503              | 19.96568             | 15.01    | 41.54     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams)          |
| ResNeXt101_vd_<br>32x4d       | 0.8033    | 0.9512    | 16.28103              | 20.25611             | 15.49    | 41.56     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams)       |
| ResNeXt101_<br>64x4d          | 0.7835    | 0.9452    | 30.4788               | 36.29801             | 29.05    | 78.12     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams)          |
| ResNeXt101_vd_<br>64x4d       | 0.8078    | 0.9520    | 30.40456              | 36.77324             | 29.53    | 78.14     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams)       |
| ResNeXt152_<br>32x4d          | 0.7898    | 0.9433    | 24.86299              | 29.36764             | 22.01    | 56.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams)          |
| ResNeXt152_vd_<br>32x4d       | 0.8072    | 0.9520    | 25.03258              | 30.08987             | 22.49    | 56.3      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams)       |
| ResNeXt152_<br>64x4d          | 0.7951    | 0.9471    | 46.7564               | 56.34108             | 43.03    | 107.57    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams)          |
| ResNeXt152_vd_<br>64x4d       | 0.8108    | 0.9534    | 47.18638              | 57.16257             | 43.52    | 107.59    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams)       |
| SE_ResNet18_vd            | 0.7333    | 0.9138    | 1.7691                | 4.19877              | 4.14     | 11.8      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams)            |
| SE_ResNet34_vd            | 0.7651    | 0.9320    | 2.88559               | 7.03291              | 7.84     | 21.98     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams)            |
| SE_ResNet50_vd            | 0.7952    | 0.9475    | 4.28393               | 10.38846             | 8.67     | 28.09     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams)            |
| SE_ResNeXt50_<br>32x4d        | 0.7844    | 0.9396    | 8.74121               | 13.563               | 8.02     | 26.16     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams)        |
| SE_ResNeXt50_vd_<br>32x4d     | 0.8024    | 0.9489    | 9.17134               | 14.76192             | 10.76    | 26.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams)     |
| SE_ResNeXt101_<br>32x4d       | 0.7939    | 0.9443    | 18.82604              | 25.31814             | 15.02    | 46.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams)       |
| SENet154_vd               | 0.8140    | 0.9548    | 53.79794              | 66.31684             | 45.83    | 114.29    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams)               |
222 223 224 225 226 227 228 229 230 231


<a name="DPN_and_DenseNet_series"></a>
### DPN and DenseNet series

Accuracy and inference time metrics of DPN and DenseNet series models are shown as follows. More detailed information can be refered to [DPN and DenseNet series tutorial](./docs/en/models/DPN_DenseNet_en.md).


| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|
L
littletomatodonkey 已提交
232 233 234 235 236 237 238 239 240 241
| DenseNet121 | 0.7566    | 0.9258    | 4.40447               | 9.32623              | 5.69     | 7.98      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams) |
| DenseNet161 | 0.7857    | 0.9414    | 10.39152              | 22.15555             | 15.49    | 28.68     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams) |
| DenseNet169 | 0.7681    | 0.9331    | 6.43598               | 12.98832             | 6.74     | 14.15     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams) |
| DenseNet201 | 0.7763    | 0.9366    | 8.20652               | 17.45838             | 8.61     | 20.01     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams) |
| DenseNet264 | 0.7796    | 0.9385    | 12.14722              | 26.27707             | 11.54    | 33.37     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams) |
| DPN68       | 0.7678    | 0.9343    | 11.64915              | 12.82807             | 4.03     | 10.78     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams)       |
| DPN92       | 0.7985    | 0.9480    | 18.15746              | 23.87545             | 12.54    | 36.29     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams)       |
| DPN98       | 0.8059    | 0.9510    | 21.18196              | 33.23925             | 22.22    | 58.46     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams)       |
| DPN107      | 0.8089    | 0.9532    | 27.62046              | 52.65353             | 35.06    | 82.97     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams)      |
| DPN131      | 0.8070    | 0.9514    | 28.33119              | 46.19439             | 30.51    | 75.36     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams)      |
242 243 244 245 246 247 248 249 250

<a name="HRNet_series"></a>
### HRNet series

Accuracy and inference time metrics of HRNet series models are shown as follows. More detailed information can be refered to [Mobile series tutorial](./docs/en/models/HRNet_en.md).


| Model         | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                 |
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|
L
littletomatodonkey 已提交
251 252 253 254 255 256 257 258 259
| HRNet_W18_C | 0.7692    | 0.9339    | 7.40636          | 13.29752         | 4.14     | 21.29     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_pretrained.pdparams) |
| HRNet_W18_C_ssld | 0.81162    | 0.95804    | 7.40636          | 13.29752         | 4.14     | 21.29     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_ssld_pretrained.pdparams) |
| HRNet_W30_C | 0.7804    | 0.9402    | 9.57594          | 17.35485         | 16.23    | 37.71     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W30_C_pretrained.pdparams) |
| HRNet_W32_C | 0.7828    | 0.9424    | 9.49807          | 17.72921         | 17.86    | 41.23     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W32_C_pretrained.pdparams) |
| HRNet_W40_C | 0.7877    | 0.9447    | 12.12202         | 25.68184         | 25.41    | 57.55     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W40_C_pretrained.pdparams) |
| HRNet_W44_C | 0.7900    | 0.9451    | 13.19858         | 32.25202         | 29.79    | 67.06     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W44_C_pretrained.pdparams) |
| HRNet_W48_C | 0.7895    | 0.9442    | 13.70761         | 34.43572         | 34.58    | 77.47     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_pretrained.pdparams) |
| HRNet_W48_C_ssld | 0.8363    | 0.9682    | 13.70761         | 34.43572         | 34.58    | 77.47     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_pretrained.pdparams) |
| HRNet_W64_C | 0.7930    | 0.9461    | 17.57527         | 47.9533          | 57.83    | 128.06    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W64_C_pretrained.pdparams) |
260
| SE_HRNet_W64_C_ssld | 0.8475    |  0.9726    |    31.69770      |      94.99546     | 57.83    | 128.97    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_HRNet_W64_C_ssld_pretrained.pdparams) |
261 262 263 264 265 266 267 268 269 270


<a name="Inception_series"></a>
### Inception series

Accuracy and inference time metrics of Inception series models are shown as follows. More detailed information can be refered to [Inception series tutorial](./docs/en/models/Inception_en.md).


| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|
L
littletomatodonkey 已提交
271 272 273 274 275 276 277 278
| GoogLeNet          | 0.7070    | 0.8966    | 1.88038               | 4.48882              | 2.88     | 8.46      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams)          |
| Xception41         | 0.7930    | 0.9453    | 4.96939               | 17.01361             | 16.74    | 22.69     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams)         |
| Xception41_deeplab | 0.7955    | 0.9438    | 5.33541               | 17.55938             | 18.16    | 26.73     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams) |
| Xception65         | 0.8100    | 0.9549    | 7.26158               | 25.88778             | 25.95    | 35.48     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams)         |
| Xception65_deeplab | 0.8032    | 0.9449    | 7.60208               | 26.03699             | 27.37    | 39.52     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams) |
| Xception71         | 0.8111    | 0.9545    | 8.72457               | 31.55549             | 31.77    | 37.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams)         |
| InceptionV3        | 0.7914    | 0.9459    | 6.64054              | 13.53630              | 11.46    | 23.83     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams)        |
| InceptionV4        | 0.8077    | 0.9526    | 12.99342              | 25.23416             | 24.57    | 42.68     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams)        |
279 280 281 282 283 284


<a name="EfficientNet_and_ResNeXt101_wsl_series"></a>
### EfficientNet and ResNeXt101_wsl series

Accuracy and inference time metrics of EfficientNet and ResNeXt101_wsl series models are shown as follows. More detailed information can be refered to [EfficientNet and ResNeXt101_wsl series tutorial](./docs/en/models/EfficientNet_and_ResNeXt101_wsl_en.md).
D
dyning 已提交
285

D
dyning 已提交
286

287 288
| Model                       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                               |
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
L
littletomatodonkey 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302
| ResNeXt101_<br>32x8d_wsl      | 0.8255    | 0.9674    | 18.52528         | 34.25319         | 29.14    | 78.44     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams)      |
| ResNeXt101_<br>32x16d_wsl     | 0.8424    | 0.9726    | 25.60395         | 71.88384         | 57.55    | 152.66    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams)     |
| ResNeXt101_<br>32x32d_wsl     | 0.8497    | 0.9759    | 54.87396         | 160.04337        | 115.17   | 303.11    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams)     |
| ResNeXt101_<br>32x48d_wsl     | 0.8537    | 0.9769    | 99.01698256      | 315.91261        | 173.58   | 456.2     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams)     |
| Fix_ResNeXt101_<br>32x48d_wsl | 0.8626    | 0.9797    | 160.0838242      | 595.99296        | 354.23   | 456.2     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams) |
| EfficientNetB0            | 0.7738    | 0.9331    | 3.442            | 6.11476          | 0.72     | 5.1       | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams)            |
| EfficientNetB1            | 0.7915    | 0.9441    | 5.3322           | 9.41795          | 1.27     | 7.52      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams)            |
| EfficientNetB2            | 0.7985    | 0.9474    | 6.29351          | 10.95702         | 1.85     | 8.81      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams)            |
| EfficientNetB3            | 0.8115    | 0.9541    | 7.67749          | 16.53288         | 3.43     | 11.84     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams)            |
| EfficientNetB4            | 0.8285    | 0.9623    | 12.15894         | 30.94567         | 8.29     | 18.76     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams)            |
| EfficientNetB5            | 0.8362    | 0.9672    | 20.48571         | 61.60252         | 19.51    | 29.61     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams)            |
| EfficientNetB6            | 0.8400    | 0.9688    | 32.62402         | -                | 36.27    | 42        | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams)            |
| EfficientNetB7            | 0.8430    | 0.9689    | 53.93823         | -                | 72.35    | 64.92     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams)            |
| EfficientNetB0_<br>small      | 0.7580    | 0.9258    | 2.3076           | 4.71886          | 0.72     | 4.65      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams)      |
303

D
dyning 已提交
304

305 306
<a name="ResNeSt_and_RegNet_series"></a>
### ResNeSt and RegNet series
D
dyning 已提交
307

308
Accuracy and inference time metrics of ResNeSt and RegNet series models are shown as follows. More detailed information can be refered to [ResNeSt and RegNet series tutorial](./docs/en/models/ResNeSt_RegNet_en.md).
D
dyning 已提交
309 310


311 312
| Model                    | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                                 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
L
littletomatodonkey 已提交
313 314 315
| ResNeSt50_<br>fast_1s1x64d | 0.8035    | 0.9528    | 3.45405                | 8.72680                | 8.68     | 26.3      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams) |
| ResNeSt50              | 0.8083    | 0.9542    | 6.69042    | 8.01664                | 10.78    | 27.5      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams)              |
| RegNetX_4GF            | 0.785     | 0.9416    |    6.46478              |      11.19862           | 8        | 22.1      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams)            |
D
dyning 已提交
316 317


318 319
<a name="License"></a>
## License
D
dyning 已提交
320

321
PaddleClas is released under the <a href="https://github.com/PaddlePaddle/PaddleClas/blob/master/LICENSE">Apache 2.0 license</a>
D
dyning 已提交
322 323


324 325
<a name="Contribution"></a>
## Contribution
D
dyning 已提交
326

327
Contributions are highly welcomed and we would really appreciate your feedback!!
D
dyning 已提交
328

329 330
- Thank [nblib](https://github.com/nblib) to fix bug of RandErasing.
- Thank [chenpy228](https://github.com/chenpy228) to fix some typos PaddleClas.