未验证 提交 f6e025d5 编写于 作者: L littletomatodonkey 提交者: GitHub

fix model cnt (#470)

上级 b0904fd2
......@@ -21,7 +21,7 @@ PaddleClas is a toolset for image classification tasks prepared for the industry
## Features
- Rich model zoo. Based on the ImageNet-1k classification dataset, PaddleClas provides 24 series of classification network structures and training configurations, 122 models' pretrained weights and their evaluation metrics.
- Rich model zoo. Based on the ImageNet-1k classification dataset, PaddleClas provides 29 series of classification network structures and training configurations, 134 models' pretrained weights and their evaluation metrics.
- SSLD Knowledge Distillation. Based on this SSLD distillation strategy, the top-1 acc of the distilled model is generally increased by more than 3%.
......
......@@ -23,7 +23,7 @@
## 特性
- 丰富的模型库:基于ImageNet1k分类数据集,PaddleClas提供了24个系列的分类网络结构和训练配置,122个预训练模型和性能评估。
- 丰富的模型库:基于ImageNet1k分类数据集,PaddleClas提供了29个系列的分类网络结构和训练配置,134个预训练模型和性能评估。
- SSLD知识蒸馏:基于该方案蒸馏模型的识别准确率普遍提升3%以上。
......
......@@ -24,8 +24,6 @@ DarkNet53 is designed for object detection by YOLO author in the paper. The netw
| VGG16 | 0.720 | 0.907 | 0.715 | 0.901 | 30.810 | 138.340 |
| VGG19 | 0.726 | 0.909 | | | 39.130 | 143.650 |
| DarkNet53 | 0.780 | 0.941 | 0.772 | 0.938 | 18.580 | 41.600 |
| ResNet50_ACNet | 0.767 | 0.932 | | | 10.730 | 33.110 |
| ResNet50_ACNet<br>_deploy | 0.767 | 0.932 | | | 8.190 | 25.550 |
......@@ -42,9 +40,6 @@ DarkNet53 is designed for object detection by YOLO author in the paper. The netw
| VGG16 | 224 | 256 | 2.616 |
| VGG19 | 224 | 256 | 3.076 |
| DarkNet53 | 256 | 256 | 3.139 |
| ResNet50_ACNet<br>_deploy | 224 | 256 | 5.626 |
## Inference speed based on T4 GPU
......@@ -58,5 +53,3 @@ DarkNet53 is designed for object detection by YOLO author in the paper. The netw
| VGG16 | 224 | 256 | 3.13237 | 7.19257 | 12.50913 | 5.61769 | 16.40064 | 32.03939 |
| VGG19 | 224 | 256 | 3.69987 | 8.59168 | 15.07866 | 6.65221 | 20.4334 | 41.55902 |
| DarkNet53 | 256 | 256 | 3.18101 | 5.88419 | 10.14964 | 4.10829 | 12.1714 | 22.15266 |
| ResNet50_ACNet | 256 | 256 | 3.89002 | 4.58195 | 9.01095 | 5.33395 | 10.96843 | 18.70368 |
| ResNet50_ACNet_deploy | 224 | 256 | 2.6823 | 5.944 | 7.16655 | 3.49161 | 7.78374 | 13.94361 |
......@@ -2,7 +2,7 @@
## Overview
Based on the ImageNet1k classification dataset, the 23 classification network structures supported by PaddleClas and the corresponding 117 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters.
Based on the ImageNet1k classification dataset, the 29 classification network structures supported by PaddleClas and the corresponding 134 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters.
## Evaluation environment
* CPU evaluation environment is based on Snapdragon 855 (SD855).
......
......@@ -22,8 +22,6 @@ DarkNet53是YOLO作者在论文设计的用于目标检测的backbone,该网
| VGG16 | 0.720 | 0.907 | 0.715 | 0.901 | 30.810 | 138.340 |
| VGG19 | 0.726 | 0.909 | | | 39.130 | 143.650 |
| DarkNet53 | 0.780 | 0.941 | 0.772 | 0.938 | 18.580 | 41.600 |
| ResNet50_ACNet | 0.767 | 0.932 | | | 10.730 | 33.110 |
| ResNet50_ACNet<br>_deploy | 0.767 | 0.932 | | | 8.190 | 25.550 |
......@@ -40,7 +38,6 @@ DarkNet53是YOLO作者在论文设计的用于目标检测的backbone,该网
| VGG16 | 224 | 256 | 2.616 |
| VGG19 | 224 | 256 | 3.076 |
| DarkNet53 | 256 | 256 | 3.139 |
| ResNet50_ACNet<br>_deploy | 224 | 256 | 5.626 |
......@@ -56,5 +53,3 @@ DarkNet53是YOLO作者在论文设计的用于目标检测的backbone,该网
| VGG16 | 224 | 256 | 3.13237 | 7.19257 | 12.50913 | 5.61769 | 16.40064 | 32.03939 |
| VGG19 | 224 | 256 | 3.69987 | 8.59168 | 15.07866 | 6.65221 | 20.4334 | 41.55902 |
| DarkNet53 | 256 | 256 | 3.18101 | 5.88419 | 10.14964 | 4.10829 | 12.1714 | 22.15266 |
| ResNet50_ACNet | 256 | 256 | 3.89002 | 4.58195 | 9.01095 | 5.33395 | 10.96843 | 18.70368 |
| ResNet50_ACNet_deploy | 224 | 256 | 2.6823 | 5.944 | 7.16655 | 3.49161 | 7.78374 | 13.94361 |
......@@ -2,7 +2,7 @@
## 概述
基于ImageNet1k分类数据集,PaddleClas支持的23种系列分类网络结构以及对应的117个图像分类预训练模型如下所示,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现。
基于ImageNet1k分类数据集,PaddleClas支持的29种系列分类网络结构以及对应的134个图像分类预训练模型如下所示,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现。
## 评估环境
* CPU的评估环境基于骁龙855(SD855)。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册