ResNet50.yaml 2.2 KB
Newer Older
L
littletomatodonkey 已提交
1 2
# global configs
Global:
3 4
  checkpoints: null
  pretrained_model: null
L
littletomatodonkey 已提交
5 6 7 8 9 10
  output_dir: "./output/"
  device: "gpu"
  class_num: 1000
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
11
  epochs: 120
L
littletomatodonkey 已提交
12 13 14 15 16 17 18
  print_batch_step: 10
  use_visualdl: False
  image_shape: [3, 224, 224]
  infer_imgs:

# model architecture
Arch:
B
Bin Lu 已提交
19
  #for classification
L
littletomatodonkey 已提交
20
  name: "ResNet50"
B
Bin Lu 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
  
  #for retrieval
  # name: "RecModel"
  # Backbone:
  #   name: "ResNet50"
  # Stoplayer: 
  #   name: "flatten_0"
  #   output_dim: 2048
  #   embedding_size: 512
  # Head:
  #   name: "ArcMargin"
  #   margin: 0.5
  #   scale:  80
L
littletomatodonkey 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
  Eval:
    - CELoss:
        weight: 1.0


Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Piecewise
    learning_rate: 0.1
    decay_epochs: [30, 60, 90]
    values: [0.1, 0.01, 0.001, 0.0001]
  regularizer:
    name: 'L2'
    coeff: 0.0001


# data loader for train and eval
DataLoader:
  Train:
    # Dataset:
    # Sampler:
    # Loader:
    batch_size: 256
    num_workers: 4
    file_list: "./dataset/ILSVRC2012/train_list.txt"
    data_dir: "./dataset/ILSVRC2012/"
    shuffle_seed: 0
    transforms:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1./255.
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - ToCHWImage:
  Eval:
    # TOTO: modify to the latest trainer
    # Dataset:
    # Sampler:
    # Loader:
    batch_size: 128
    num_workers: 4
    file_list: "./dataset/ILSVRC2012/val_list.txt"
    data_dir: "./dataset/ILSVRC2012/"
    shuffle_seed: 0
    transforms:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - ToCHWImage:

Metric:
    Train:
    - Topk:
        k: [1, 5]
    Eval:
    - Topk:
        k: [1, 5]