# global configs Global: checkpoints: null pretrained_model: null output_dir: "./output/" device: "gpu" class_num: 1000 save_interval: 1 eval_during_train: True eval_interval: 1 epochs: 120 print_batch_step: 10 use_visualdl: False image_shape: [3, 224, 224] infer_imgs: # model architecture Arch: #for classification name: "ResNet50" #for retrieval # name: "RecModel" # Backbone: # name: "ResNet50" # Stoplayer: # name: "flatten_0" # output_dim: 2048 # embedding_size: 512 # Head: # name: "ArcMargin" # margin: 0.5 # scale: 80 # loss function config for traing/eval process Loss: Train: - CELoss: weight: 1.0 Eval: - CELoss: weight: 1.0 Optimizer: name: Momentum momentum: 0.9 lr: name: Piecewise learning_rate: 0.1 decay_epochs: [30, 60, 90] values: [0.1, 0.01, 0.001, 0.0001] regularizer: name: 'L2' coeff: 0.0001 # data loader for train and eval DataLoader: Train: # Dataset: # Sampler: # Loader: batch_size: 256 num_workers: 4 file_list: "./dataset/ILSVRC2012/train_list.txt" data_dir: "./dataset/ILSVRC2012/" shuffle_seed: 0 transforms: - DecodeImage: to_rgb: True channel_first: False - RandCropImage: size: 224 - RandFlipImage: flip_code: 1 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: Eval: # TOTO: modify to the latest trainer # Dataset: # Sampler: # Loader: batch_size: 128 num_workers: 4 file_list: "./dataset/ILSVRC2012/val_list.txt" data_dir: "./dataset/ILSVRC2012/" shuffle_seed: 0 transforms: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: resize_short: 256 - CropImage: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: Metric: Train: - Topk: k: [1, 5] Eval: - Topk: k: [1, 5]