infer.py 2.7 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

littletomatodonkey's avatar
littletomatodonkey 已提交
15
import numpy as np
16
import cv2
L
littletomatodonkey 已提交
17
import shutil
littletomatodonkey's avatar
littletomatodonkey 已提交
18 19
import os
import sys
L
littletomatodonkey 已提交
20 21 22 23

import paddle
import paddle.nn.functional as F

littletomatodonkey's avatar
littletomatodonkey 已提交
24 25 26
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
27

littletomatodonkey's avatar
littletomatodonkey 已提交
28
from ppcls.utils.save_load import load_dygraph_pretrain
littletomatodonkey's avatar
littletomatodonkey 已提交
29
from ppcls.modeling import architectures
L
littletomatodonkey 已提交
30 31
import utils
from utils import get_image_list
W
WuHaobo 已提交
32

littletomatodonkey's avatar
littletomatodonkey 已提交
33

W
WuHaobo 已提交
34 35 36 37 38 39 40
def postprocess(outputs, topk=5):
    output = outputs[0]
    prob = np.array(output).flatten()
    index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
    return zip(index, prob[index])


L
littletomatodonkey 已提交
41 42 43 44 45 46 47
def save_prelabel_results(class_id, input_filepath, output_idr):
    output_dir = os.path.join(output_idr, str(class_id))
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)
    shutil.copy(input_filepath, output_dir)


W
WuHaobo 已提交
48
def main():
49
    args = utils.parse_args()
D
dyning 已提交
50
    # assign the place
51
    place = paddle.set_device('gpu' if args.use_gpu else 'cpu')
littletomatodonkey's avatar
littletomatodonkey 已提交
52

53
    net = architectures.__dict__[args.model](class_dim=args.class_num)
littletomatodonkey's avatar
littletomatodonkey 已提交
54 55 56
    load_dygraph_pretrain(net, args.pretrained_model, args.load_static_weights)
    image_list = get_image_list(args.image_file)
    for idx, filename in enumerate(image_list):
57 58
        img = cv2.imread(filename)[:, :, ::-1]
        data = utils.preprocess(img, args)
littletomatodonkey's avatar
littletomatodonkey 已提交
59 60 61 62 63 64
        data = np.expand_dims(data, axis=0)
        data = paddle.to_tensor(data)
        net.eval()
        outputs = net(data)
        if args.model == "GoogLeNet":
            outputs = outputs[0]
65
        outputs = F.softmax(outputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
66 67
        outputs = outputs.numpy()
        probs = postprocess(outputs)
L
littletomatodonkey 已提交
68 69

        top1_class_id = 0
littletomatodonkey's avatar
littletomatodonkey 已提交
70 71 72 73 74
        rank = 1
        print("Current image file: {}".format(filename))
        for idx, prob in probs:
            print("\ttop{:d}, class id: {:d}, probability: {:.4f}".format(
                rank, idx, prob))
L
littletomatodonkey 已提交
75 76
            if rank == 1:
                top1_class_id = idx
littletomatodonkey's avatar
littletomatodonkey 已提交
77
            rank += 1
L
littletomatodonkey 已提交
78 79 80 81 82

        if args.pre_label_image:
            save_prelabel_results(top1_class_id, filename,
                                  args.pre_label_out_idr)

83 84
    return

W
WuHaobo 已提交
85 86 87

if __name__ == "__main__":
    main()