infer.py 4.0 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ppcls.utils.save_load import load_dygraph_pretrain
littletomatodonkey's avatar
littletomatodonkey 已提交
16 17 18 19 20 21 22 23 24 25
from ppcls.modeling import architectures
import paddle.fluid as fluid
import numpy as np
import argparse
import utils
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
26

W
WuHaobo 已提交
27 28 29 30 31 32 33 34 35 36

def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument("-i", "--image_file", type=str)
    parser.add_argument("-m", "--model", type=str)
    parser.add_argument("-p", "--pretrained_model", type=str)
    parser.add_argument("--use_gpu", type=str2bool, default=True)
37
    parser.add_argument("--load_static_weights", type=str2bool, default=True)
W
WuHaobo 已提交
38 39 40

    return parser.parse_args()

41

W
WuHaobo 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def create_operators():
    size = 224
    img_mean = [0.485, 0.456, 0.406]
    img_std = [0.229, 0.224, 0.225]
    img_scale = 1.0 / 255.0

    decode_op = utils.DecodeImage()
    resize_op = utils.ResizeImage(resize_short=256)
    crop_op = utils.CropImage(size=(size, size))
    normalize_op = utils.NormalizeImage(
        scale=img_scale, mean=img_mean, std=img_std)
    totensor_op = utils.ToTensor()

    return [decode_op, resize_op, crop_op, normalize_op, totensor_op]


def preprocess(fname, ops):
W
WuHaobo 已提交
59
    data = open(fname, 'rb').read()
W
WuHaobo 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72
    for op in ops:
        data = op(data)

    return data


def postprocess(outputs, topk=5):
    output = outputs[0]
    prob = np.array(output).flatten()
    index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
    return zip(index, prob[index])


littletomatodonkey's avatar
littletomatodonkey 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def get_image_list(img_file):
    imgs_lists = []
    if img_file is None or not os.path.exists(img_file):
        raise Exception("not found any img file in {}".format(img_file))

    img_end = ['jpg', 'png', 'jpeg', 'JPEG', 'JPG', 'bmp']
    if os.path.isfile(img_file) and img_file.split('.')[-1] in img_end:
        imgs_lists.append(img_file)
    elif os.path.isdir(img_file):
        for single_file in os.listdir(img_file):
            if single_file.split('.')[-1] in img_end:
                imgs_lists.append(os.path.join(img_file, single_file))
    if len(imgs_lists) == 0:
        raise Exception("not found any img file in {}".format(img_file))
    return imgs_lists


W
WuHaobo 已提交
90 91 92
def main():
    args = parse_args()
    operators = create_operators()
D
dyning 已提交
93
    # assign the place
94 95 96 97 98 99
    if args.use_gpu:
        gpu_id = fluid.dygraph.parallel.Env().dev_id
        place = fluid.CUDAPlace(gpu_id)
    else:
        place = fluid.CPUPlace()

D
dyning 已提交
100 101
    with fluid.dygraph.guard(place):
        net = architectures.__dict__[args.model]()
102 103
        load_dygraph_pretrain(net, args.pretrained_model,
                              args.load_static_weights)
littletomatodonkey's avatar
littletomatodonkey 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        image_list = get_image_list(args.image_file)
        for idx, filename in enumerate(image_list):
            data = preprocess(filename, operators)
            data = np.expand_dims(data, axis=0)
            data = fluid.dygraph.to_variable(data)
            net.eval()
            outputs = net(data)
            outputs = fluid.layers.softmax(outputs)
            outputs = outputs.numpy()

            probs = postprocess(outputs)
            rank = 1
            print("Current image file: {}".format(filename))
            for idx, prob in probs:
                print("\ttop{:d}, class id: {:d}, probability: {:.4f}".format(
                    rank, idx, prob))
                rank += 1
121 122
    return

W
WuHaobo 已提交
123 124 125

if __name__ == "__main__":
    main()