resnet_acnet.py 10.9 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
littletomatodonkey's avatar
littletomatodonkey 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
littletomatodonkey's avatar
littletomatodonkey 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22 23 24

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr

__all__ = [
littletomatodonkey's avatar
littletomatodonkey 已提交
25 26
    "ResNet18_ACNet", "ResNet34_ACNet", "ResNet50_ACNet", "ResNet101_ACNet",
    "ResNet152_ACNet"
W
WuHaobo 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
]


class ResNetACNet(object):
    """ ACNet """

    def __init__(self, layers=50, deploy=False):
        """init"""
        self.layers = layers
        self.deploy = deploy

    def net(self, input, class_dim=1000):
        """model"""
        layers = self.layers
        supported_layers = [18, 34, 50, 101, 152]
        assert layers in supported_layers, \
littletomatodonkey's avatar
littletomatodonkey 已提交
43 44
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

        conv = self.conv_bn_layer(
            input=input,
            num_filters=64,
            filter_size=7,
            stride=2,
            act='relu',
            name="conv1")
        conv = fluid.layers.pool2d(
            input=conv,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')
        if layers >= 50:
            for block in range(len(depth)):
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    conv = self.bottleneck_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        name=conv_name)
        else:
            for block in range(len(depth)):
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    conv = self.basic_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        is_first=block == i == 0,
                        name=conv_name)

        pool = fluid.layers.pool2d(
            input=conv, pool_size=7, pool_type='avg', global_pooling=True)

        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
        out = fluid.layers.fc(
            input=pool,
            size=class_dim,
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv)))
        return out

    def conv_bn_layer(self, **kwargs):
        """
        conv_bn_layer
        """
        if kwargs['filter_size'] == 1:
            return self.conv_bn_layer_ori(**kwargs)
        else:
            return self.conv_bn_layer_ac(**kwargs)

    # conv bn+relu
    def conv_bn_layer_ori(self,
                          input,
                          num_filters,
                          filter_size,
                          stride=1,
                          groups=1,
                          act=None,
                          name=None):
        """
        standard convbn
        used for 1x1 convbn in acnet
        """
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False,
            name=name + '.conv2d.output.1')

        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
            name=bn_name + '.output.1',
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance', )

    # conv bn+relu
    def conv_bn_layer_ac(self,
                         input,
                         num_filters,
                         filter_size,
                         stride=1,
                         groups=1,
                         act=None,
                         name=None):
        """ ACNet conv bn """
        padding = (filter_size - 1) // 2

        square_conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            act=act if self.deploy else None,
            param_attr=ParamAttr(name=name + "_acsquare_weights"),
            bias_attr=ParamAttr(name=name + "_acsquare_bias")
            if self.deploy else False,
            name=name + '.acsquare.conv2d.output.1')

        if self.deploy:
            return square_conv
        else:
            ver_conv = fluid.layers.conv2d(
                input=input,
                num_filters=num_filters,
                filter_size=(filter_size, 1),
                stride=stride,
                padding=(padding, 0),
                groups=groups,
                act=None,
                param_attr=ParamAttr(name=name + "_acver_weights"),
                bias_attr=False,
                name=name + '.acver.conv2d.output.1')

            hor_conv = fluid.layers.conv2d(
                input=input,
                num_filters=num_filters,
                filter_size=(1, filter_size),
                stride=stride,
                padding=(0, padding),
                groups=groups,
                act=None,
                param_attr=ParamAttr(name=name + "_achor_weights"),
                bias_attr=False,
                name=name + '.achor.conv2d.output.1')

            if name == "conv1":
                bn_name = "bn_" + name
            else:
                bn_name = "bn" + name[3:]

            square_bn = fluid.layers.batch_norm(
                input=square_conv,
                act=None,
                name=bn_name + '.acsquare.output.1',
                param_attr=ParamAttr(name=bn_name + '_acsquare_scale'),
                bias_attr=ParamAttr(bn_name + '_acsquare_offset'),
                moving_mean_name=bn_name + '_acsquare_mean',
                moving_variance_name=bn_name + '_acsquare_variance', )

            ver_bn = fluid.layers.batch_norm(
                input=ver_conv,
                act=None,
                name=bn_name + '.acver.output.1',
                param_attr=ParamAttr(name=bn_name + '_acver_scale'),
                bias_attr=ParamAttr(bn_name + '_acver_offset'),
                moving_mean_name=bn_name + '_acver_mean',
                moving_variance_name=bn_name + '_acver_variance', )

            hor_bn = fluid.layers.batch_norm(
                input=hor_conv,
                act=None,
                name=bn_name + '.achor.output.1',
                param_attr=ParamAttr(name=bn_name + '_achor_scale'),
                bias_attr=ParamAttr(bn_name + '_achor_offset'),
                moving_mean_name=bn_name + '_achor_mean',
                moving_variance_name=bn_name + '_achor_variance', )

            return fluid.layers.elementwise_add(
                x=square_bn, y=ver_bn + hor_bn, act=act)

    def shortcut(self, input, ch_out, stride, is_first, name):
        """ shortcut """
        ch_in = input.shape[1]
littletomatodonkey's avatar
littletomatodonkey 已提交
243
        if ch_in != ch_out or stride != 1 or is_first is True:
W
WuHaobo 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
            return self.conv_bn_layer(
                input=input,
                num_filters=ch_out,
                filter_size=1,
                stride=stride,
                name=name)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, name):
        """" bottleneck_block """
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
        conv2 = self.conv_bn_layer(
            input=conv1,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        short = self.shortcut(
            input,
            num_filters * 4,
            stride,
            is_first=False,
            name=name + "_branch1")

        return fluid.layers.elementwise_add(
            x=short, y=conv2, act='relu', name=name + ".add.output.5")

    def basic_block(self, input, num_filters, stride, is_first, name):
        """ basic_block """
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=3,
            act='relu',
            stride=stride,
            name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
        short = self.shortcut(
            input, num_filters, stride, is_first, name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')


def ResNet18_ACNet(deploy=False):
    """ResNet18 + ACNet"""
littletomatodonkey's avatar
littletomatodonkey 已提交
307
    model = ResNetACNet(layers=18, deploy=deploy)
W
WuHaobo 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    return model


def ResNet34_ACNet(deploy=False):
    """ResNet34 + ACNet"""
    model = ResNetACNet(layers=34, deploy=deploy)
    return model


def ResNet50_ACNet(deploy=False):
    """ResNet50 + ACNet"""
    model = ResNetACNet(layers=50, deploy=deploy)
    return model


def ResNet101_ACNet(deploy=False):
    """ResNet101 + ACNet"""
    model = ResNetACNet(layers=101, deploy=deploy)
    return model


def ResNet152_ACNet(deploy=False):
    """ResNet152 + ACNet"""
    model = ResNetACNet(layers=152, deploy=deploy)
    return model