# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr __all__ = [ "ResNet18_ACNet", "ResNet34_ACNet", "ResNet50_ACNet", "ResNet101_ACNet", "ResNet152_ACNet" ] class ResNetACNet(object): """ ACNet """ def __init__(self, layers=50, deploy=False): """init""" self.layers = layers self.deploy = deploy def net(self, input, class_dim=1000): """model""" layers = self.layers supported_layers = [18, 34, 50, 101, 152] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] num_filters = [64, 128, 256, 512] conv = self.conv_bn_layer( input=input, num_filters=64, filter_size=7, stride=2, act='relu', name="conv1") conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') if layers >= 50: for block in range(len(depth)): for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = "res" + str(block + 2) + "a" else: conv_name = "res" + str(block + 2) + "b" + str(i) else: conv_name = "res" + str(block + 2) + chr(97 + i) conv = self.bottleneck_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, name=conv_name) else: for block in range(len(depth)): for i in range(depth[block]): conv_name = "res" + str(block + 2) + chr(97 + i) conv = self.basic_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, is_first=block == i == 0, name=conv_name) pool = fluid.layers.pool2d( input=conv, pool_size=7, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) out = fluid.layers.fc( input=pool, size=class_dim, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv))) return out def conv_bn_layer(self, **kwargs): """ conv_bn_layer """ if kwargs['filter_size'] == 1: return self.conv_bn_layer_ori(**kwargs) else: return self.conv_bn_layer_ac(**kwargs) # conv bn+relu def conv_bn_layer_ori(self, input, num_filters, filter_size, stride=1, groups=1, act=None, name=None): """ standard convbn used for 1x1 convbn in acnet """ conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, param_attr=ParamAttr(name=name + "_weights"), bias_attr=False, name=name + '.conv2d.output.1') if name == "conv1": bn_name = "bn_" + name else: bn_name = "bn" + name[3:] return fluid.layers.batch_norm( input=conv, act=act, name=bn_name + '.output.1', param_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset'), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance', ) # conv bn+relu def conv_bn_layer_ac(self, input, num_filters, filter_size, stride=1, groups=1, act=None, name=None): """ ACNet conv bn """ padding = (filter_size - 1) // 2 square_conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=groups, act=act if self.deploy else None, param_attr=ParamAttr(name=name + "_acsquare_weights"), bias_attr=ParamAttr(name=name + "_acsquare_bias") if self.deploy else False, name=name + '.acsquare.conv2d.output.1') if self.deploy: return square_conv else: ver_conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=(filter_size, 1), stride=stride, padding=(padding, 0), groups=groups, act=None, param_attr=ParamAttr(name=name + "_acver_weights"), bias_attr=False, name=name + '.acver.conv2d.output.1') hor_conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=(1, filter_size), stride=stride, padding=(0, padding), groups=groups, act=None, param_attr=ParamAttr(name=name + "_achor_weights"), bias_attr=False, name=name + '.achor.conv2d.output.1') if name == "conv1": bn_name = "bn_" + name else: bn_name = "bn" + name[3:] square_bn = fluid.layers.batch_norm( input=square_conv, act=None, name=bn_name + '.acsquare.output.1', param_attr=ParamAttr(name=bn_name + '_acsquare_scale'), bias_attr=ParamAttr(bn_name + '_acsquare_offset'), moving_mean_name=bn_name + '_acsquare_mean', moving_variance_name=bn_name + '_acsquare_variance', ) ver_bn = fluid.layers.batch_norm( input=ver_conv, act=None, name=bn_name + '.acver.output.1', param_attr=ParamAttr(name=bn_name + '_acver_scale'), bias_attr=ParamAttr(bn_name + '_acver_offset'), moving_mean_name=bn_name + '_acver_mean', moving_variance_name=bn_name + '_acver_variance', ) hor_bn = fluid.layers.batch_norm( input=hor_conv, act=None, name=bn_name + '.achor.output.1', param_attr=ParamAttr(name=bn_name + '_achor_scale'), bias_attr=ParamAttr(bn_name + '_achor_offset'), moving_mean_name=bn_name + '_achor_mean', moving_variance_name=bn_name + '_achor_variance', ) return fluid.layers.elementwise_add( x=square_bn, y=ver_bn + hor_bn, act=act) def shortcut(self, input, ch_out, stride, is_first, name): """ shortcut """ ch_in = input.shape[1] if ch_in != ch_out or stride != 1 or is_first is True: return self.conv_bn_layer( input=input, num_filters=ch_out, filter_size=1, stride=stride, name=name) else: return input def bottleneck_block(self, input, num_filters, stride, name): """" bottleneck_block """ conv0 = self.conv_bn_layer( input=input, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a") conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, stride=stride, act='relu', name=name + "_branch2b") conv2 = self.conv_bn_layer( input=conv1, num_filters=num_filters * 4, filter_size=1, act=None, name=name + "_branch2c") short = self.shortcut( input, num_filters * 4, stride, is_first=False, name=name + "_branch1") return fluid.layers.elementwise_add( x=short, y=conv2, act='relu', name=name + ".add.output.5") def basic_block(self, input, num_filters, stride, is_first, name): """ basic_block """ conv0 = self.conv_bn_layer( input=input, num_filters=num_filters, filter_size=3, act='relu', stride=stride, name=name + "_branch2a") conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, act=None, name=name + "_branch2b") short = self.shortcut( input, num_filters, stride, is_first, name=name + "_branch1") return fluid.layers.elementwise_add(x=short, y=conv1, act='relu') def ResNet18_ACNet(deploy=False): """ResNet18 + ACNet""" model = ResNetACNet(layers=18, deploy=deploy) return model def ResNet34_ACNet(deploy=False): """ResNet34 + ACNet""" model = ResNetACNet(layers=34, deploy=deploy) return model def ResNet50_ACNet(deploy=False): """ResNet50 + ACNet""" model = ResNetACNet(layers=50, deploy=deploy) return model def ResNet101_ACNet(deploy=False): """ResNet101 + ACNet""" model = ResNetACNet(layers=101, deploy=deploy) return model def ResNet152_ACNet(deploy=False): """ResNet152 + ACNet""" model = ResNetACNet(layers=152, deploy=deploy) return model