LeViT.md 5.7 KB
Newer Older
G
gaotingquan 已提交
1
# LeViT
G
gaotingquan 已提交
2
-----
G
gaotingquan 已提交
3

S
sibo2rr 已提交
4
## 目录
G
gaotingquan 已提交
5

G
gaotingquan 已提交
6 7 8 9 10 11 12 13 14 15 16 17
- [1. 模型介绍](#1)
    - [1.1 模型简介](#1.1)
    - [1.2 模型指标](#1.2)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
  - [4.1 推理模型准备](#4.1)
  - [4.2 基于 Python 预测引擎推理](#4.2)
  - [4.3 基于 C++ 预测引擎推理](#4.3)
  - [4.4 服务化部署](#4.4)
  - [4.5 端侧部署](#4.5)
  - [4.6 Paddle2ONNX 模型转换与预测](#4.6)
S
sibo2rr 已提交
18 19 20

<a name='1'></a>

G
gaotingquan 已提交
21 22 23 24 25 26
## 1. 模型介绍

<a name='1.1'></a>

### 1.1 模型简介

S
sibo2rr 已提交
27 28
LeViT 是一种快速推理的、用于图像分类任务的混合神经网络。其设计之初考虑了网络模型在不同的硬件平台上的性能,因此能够更好地反映普遍应用的真实场景。通过大量实验,作者找到了卷积神经网络与 Transformer 体系更好的结合方式,并且提出了 attention-based 方法,用于整合 Transformer 中的位置信息编码。[论文地址](https://arxiv.org/abs/2104.01136)

G
gaotingquan 已提交
29
<a name='1.2'></a>
S
sibo2rr 已提交
30

G
gaotingquan 已提交
31
### 1.2 模型指标
G
gaotingquan 已提交
32

G
gaotingquan 已提交
33
| Models           | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPs<br>(M) | Params<br>(M) |
G
gaotingquan 已提交
34
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
C
cuicheng01 已提交
35
| LeViT-128S | 0.7598 | 0.9269 | 0.766 | 0.929 | 305  | 7.8 |
G
gaotingquan 已提交
36
| LeViT-128  | 0.7810 | 0.9372 | 0.786 | 0.940 | 406  | 9.2 |
C
cuicheng01 已提交
37
| LeViT-192  | 0.7934 | 0.9446 | 0.800 | 0.947 | 658  | 11 |
T
Fix  
Tingquan Gao 已提交
38
| LeViT-256  | 0.8085 | 0.9497 | 0.816 | 0.954 | 1120 | 19 |
C
cuicheng01 已提交
39
| LeViT-384  | 0.8191 | 0.9551 | 0.826 | 0.960 | 2353 | 39 |
G
gaotingquan 已提交
40

G
gaotingquan 已提交
41 42 43
**备注:**
1. 与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。
2. PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。
G
gaotingquan 已提交
44 45 46 47 48 49 50 51 52 53 54

<a name="2"></a>  

## 2. 模型快速体验

安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)

<a name="3"></a>

## 3. 模型训练、评估和预测

G
gaotingquan 已提交
55
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/LeViT/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
G
gaotingquan 已提交
56

G
gaotingquan 已提交
57
**备注:** 由于 LeViT 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
G
gaotingquan 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

<a name="4"></a>

## 4. 模型推理部署

<a name="4.1"></a>

### 4.1 推理模型准备

Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)

Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)

<a name="4.2"></a>

### 4.2 基于 Python 预测引擎推理

G
gaotingquan 已提交
75
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理)
G
gaotingquan 已提交
76 77 78 79 80

<a name="4.3"></a>

### 4.3 基于 C++ 预测引擎推理

G
gaotingquan 已提交
81
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
G
gaotingquan 已提交
82 83 84 85 86 87 88

<a name="4.4"></a>

### 4.4 服务化部署

Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)

G
gaotingquan 已提交
89
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
G
gaotingquan 已提交
90 91 92 93 94 95 96

<a name="4.5"></a>

### 4.5 端侧部署

Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)

G
gaotingquan 已提交
97
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
G
gaotingquan 已提交
98 99 100 101 102 103 104

<a name="4.6"></a>

### 4.6 Paddle2ONNX 模型转换与预测

Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)

G
gaotingquan 已提交
105
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。