提交 5b489581 编写于 作者: G gaotingquan

add deploy discription

上级 091cb607
# CSWinTransformer
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPs 和参数量](#2)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
CSWinTransformer 是一种新的视觉 Transformer 网络,可以用作计算机视觉领域的通用骨干网路。 CSWinTransformer 提出了通过十字形的窗口来做 self-attention,它不仅计算效率非常高,而且能够通过两层计算就获得全局的感受野。CSWinTransformer 还提出了新的编码方式:LePE,进一步提高了模型的准确率。[论文地址](https://arxiv.org/abs/2107.00652)
<a name='2'></a>
<a name='1.2'></a>
## 2. 精度、FLOPs 和参数量
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPs<br>(G) | Params<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -22,3 +40,67 @@ CSWinTransformer 是一种新的视觉 Transformer 网络,可以用作计算
| CSWinTransformer_large_224 | 0.8643 | 0.9799 | 0.865 | - | 32.2 | 173.3 |
| CSWinTransformer_base_384 | 0.8550 | 0.9749 | 0.855 | - | 42.2 | 77 |
| CSWinTransformer_large_384 | 0.8748 | 0.9833 | 0.875 | - | 94.7 | 173.3 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# DLA 系列
----
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
DLA(Deep Layer Aggregation)。 视觉识别需要丰富的表示形式,其范围从低到高,范围从小到大,分辨率从精细到粗糙。即使卷积网络中的要素深度很深,仅靠隔离层还是不够的:将这些表示法进行复合和聚合可改善对内容和位置的推断。尽管已合并了残差连接以组合各层,但是这些连接本身是“浅”的,并且只能通过简单的一步操作来融合。作者通过更深层的聚合来增强标准体系结构,以更好地融合各层的信息。Deep Layer Aggregation 结构迭代地和分层地合并了特征层次结构,以使网络具有更高的准确性和更少的参数。跨体系结构和任务的实验表明,与现有的分支和合并方案相比,Deep Layer Aggregation 可提高识别和分辨率。[论文地址](https://arxiv.org/abs/1707.06484)
<a name='2'></a>
<a name='1.2'></a>
## 2. 精度、FLOPS 和参数量
### 1.2 模型指标
| Model | Params (M) | FLOPs (G) | Top-1 (%) | Top-5 (%) |
|:-----------------:|:----------:|:---------:|:---------:|:---------:|
......@@ -28,9 +45,11 @@ DLA(Deep Layer Aggregation)。 视觉识别需要丰富的表示形式,其范
| DLA102x2 | 41.4 | 9.3 | 78.85 | 94.45 |
| DLA169 | 53.5 | 11.6 | 78.09 | 94.09 |
<a name='3'></a>
### 1.3 Benchmark
<a name='1.3.1'></a>
## 3. 基于 V100 GPU 的预测速度
#### 1.3.1 基于 V100 GPU 的预测速度
| 模型 | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
| -------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
......@@ -43,3 +62,63 @@ DLA(Deep Layer Aggregation)。 视觉识别需要丰富的表示形式,其范
| DLA60 | 224 | 256 | 2.78 | 5.36 | 8.29 |
| DLA60x_c | 224 | 256 | 1.79 | 3.68 | 5.19 |
| DLA60x | 224 | 256 | 5.98 | 9.24 | 12.52 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/DLA/` 中提供了模型的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3)
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
# DPN 与 DenseNet 系列
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
* [4. 基于 T4 GPU 的预测速度](#4)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 模型介绍
<a name='1'></a>
<a name='1.1'></a>
### 1.1 模型简介
## 1. 概述
DenseNet 是 2017 年 CVPR best paper 提出的一种新的网络结构,该网络设计了一种新的跨层连接的 block,即 dense-block。相比 ResNet 中的 bottleneck,dense-block 设计了一个更激进的密集连接机制,即互相连接所有的层,每个层都会接受其前面所有层作为其额外的输入。DenseNet 将所有的 dense-block 堆叠,组合成了一个密集连接型网络。密集的连接方式使得 DenseNe 更容易进行梯度的反向传播,使得网络更容易训练。
DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 DenseNet 和 ResNeXt 结合的一个网络,其证明了 DenseNet 能从靠前的层级中提取到新的特征,而 ResNeXt 本质上是对之前层级中已提取特征的复用。作者进一步分析发现,ResNeXt 对特征有高复用率,但冗余度低,DenseNet 能创造新特征,但冗余度高。结合二者结构的优势,作者设计了 DPN 网络。最终 DPN 网络在同样 FLOPS 和参数量下,取得了比 ResNeXt 与 DenseNet 更好的结果。
......@@ -27,8 +43,9 @@ DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 Dense
对于 DPN 系列网络,模型的 FLOPS 和参数量越大,模型的精度越高。其中,由于 DPN107 的网络宽度最大,所以其是该系列网络中参数量与计算量最大的网络。
<a name='2'></a>
## 2. 精度、FLOPS 和参数量
<a name='1.2'></a>
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -43,10 +60,11 @@ DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 Dense
| DPN107 | 0.809 | 0.953 | 0.802 | 0.951 | 35.060 | 82.970 |
| DPN131 | 0.807 | 0.951 | 0.801 | 0.949 | 30.510 | 75.360 |
### 1.3 Benchmark
<a name='1.3.1'></a>
<a name='3'></a>
## 3. 基于 V100 GPU 的预测速度
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
|-------------|-----------|-------------------|-------------------|-------------------|-------------------|
......@@ -61,9 +79,9 @@ DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 Dense
| DPN107 | 224 | 256 | 19.46 | 35.62 | 50.22 |
| DPN131 | 224 | 256 | 19.64 | 34.60 | 47.42 |
<a name='1.3.2'></a>
<a name='4'></a>
## 4. 基于 T4 GPU 的预测速度
#### 1.3.2 基于 T4 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP16<br>Batch Size=1<br>(ms) | FP16<br>Batch Size=4<br>(ms) | FP16<br>Batch Size=8<br>(ms) | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
|-------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
......@@ -77,3 +95,68 @@ DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 Dense
| DPN98 | 224 | 256 | 21.70508 | 24.7755 | 40.93595 | 21.18196 | 33.23925 | 62.77751 |
| DPN107 | 224 | 256 | 27.84462 | 34.83217 | 60.67903 | 27.62046 | 52.65353 | 100.11721 |
| DPN131 | 224 | 256 | 28.58941 | 33.01078 | 55.65146 | 28.33119 | 46.19439 | 89.24904 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# ESNet 系列
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPs 和参数量](#2)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
ESNet(Enhanced ShuffleNet)是百度自研的一个轻量级网络,该网络在 ShuffleNetV2 的基础上融合了 MobileNetV3、GhostNet、PPLCNet 的优点,组合成了一个在 ARM 设备上速度更快、精度更高的网络,由于其出色的表现,所以在 PaddleDetection 推出的 [PP-PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet) 使用了该模型做 backbone,配合更强的目标检测算法,最终的指标一举刷新了目标检测模型在 ARM 设备上的 SOTA 指标。
<a name='2'></a>
<a name='1.2'></a>
## 2.精度、FLOPs 和参数量
### 1.2 模型指标
| Models | Top1 | Top5 | FLOPs<br>(M) | Params<br/>(M) |
|:--:|:--:|:--:|:--:|:--:|
......@@ -23,3 +40,67 @@ ESNet(Enhanced ShuffleNet)是百度自研的一个轻量级网络,该网络在
| ESNet_x1_0 | 73.92 | 91.40 | 197.3 | 4.64 |
关于 Inference speed 等信息,敬请期待。
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# EfficientNet 与 ResNeXt101_wsl 系列
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
* [4. 基于 T4 GPU 的预测速度](#4)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
<a name='1'></a>
## 1. 概述
EfficientNet 是 Google 于 2019 年发布的一个基于 NAS 的轻量级网络,其中 EfficientNetB7 刷新了当时 ImageNet-1k 的分类准确率。在该文章中,作者指出,传统的提升神经网络性能的方法主要是从网络的宽度、网络的深度、以及输入图片的分辨率入手,但是作者通过实验发现,平衡这三个维度对精度和效率的提升至关重要,于是,作者通过一系列的实验中总结出了如何同时平衡这三个维度的放缩,与此同时,基于这种放缩方法,作者在 EfficientNet_B0 的基础上,构建了 EfficientNet 系列中 B1-B7 共 7 个网络,并在同样 FLOPS 与参数量的情况下,精度达到了 state-of-the-art 的效果。
ResNeXt 是 facebook 于 2016 年提出的一种对 ResNet 的改进版网络。在 2019 年,facebook 通过弱监督学习研究了该系列网络在 ImageNet 上的精度上限,为了区别之前的 ResNeXt 网络,该系列网络的后缀为 wsl,其中 wsl 是弱监督学习(weakly-supervised-learning)的简称。为了能有更强的特征提取能力,研究者将其网络宽度进一步放大,其中最大的 ResNeXt101_32x48d_wsl 拥有 8 亿个参数,将其在 9.4 亿的弱标签图片下训练并在 ImageNet-1k 上做 finetune,最终在 ImageNet-1k 的 top-1 达到了 85.4%,这也是迄今为止在 ImageNet-1k 的数据集上以 224x224 的分辨率下精度最高的网络。Fix-ResNeXt 中,作者使用了更大的图像分辨率,针对训练图片和验证图片数据预处理不一致的情况下做了专门的 Fix 策略,并使得 ResNeXt101_32x48d_wsl 拥有了更高的精度,由于其用到了 Fix 策略,故命名为 Fix-ResNeXt101_32x48d_wsl。
......@@ -26,8 +43,9 @@ ResNeXt 是 facebook 于 2016 年提出的一种对 ResNet 的改进版网络。
目前 PaddleClas 开源的这两类模型的预训练模型一共有 14 个。从上图中可以看出 EfficientNet 系列网络优势非常明显,ResNeXt101_wsl 系列模型由于用到了更多的数据,最终的精度也更高。EfficientNet_B0_Small 是去掉了 SE_block 的 EfficientNet_B0,其具有更快的推理速度。
<a name='2'></a>
## 2. 精度、FLOPS 和参数量
<a name='1.2'></a>
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -46,9 +64,11 @@ ResNeXt 是 facebook 于 2016 年提出的一种对 ResNet 的改进版网络。
| EfficientNetB7 | 0.843 | 0.969 | 0.844 | 0.971 | 72.350 | 64.920 |
| EfficientNetB0_<br>small | 0.758 | 0.926 | | | 0.720 | 4.650 |
<a name='3'></a>
### 1.3 Benchmark
## 3. 基于 V100 GPU 的预测速度
<a name='1.3.1'></a>
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
|-------------------------------|-----------|-------------------|-------------------------------|-------------------------------|-------------------------------|
......@@ -67,10 +87,9 @@ ResNeXt 是 facebook 于 2016 年提出的一种对 ResNet 的改进版网络。
| EfficientNetB7 | 600 | 632 | 25.91 | 71.23 | 128.20 |
| EfficientNetB0_<br>small | 224 | 256 | 1.24 | 2.59 | 3.92 |
<a name='1.3.2'></a>
<a name='4'></a>
## 4. 基于 T4 GPU 的预测速度
## 1.3.2 基于 T4 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP16<br>Batch Size=1<br>(ms) | FP16<br>Batch Size=4<br>(ms) | FP16<br>Batch Size=8<br>(ms) | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
|---------------------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
......@@ -88,3 +107,68 @@ ResNeXt 是 facebook 于 2016 年提出的一种对 ResNet 的改进版网络。
| EfficientNetB6 | 528 | 560 | 30.05911 | - | - | 32.62402 | - | - |
| EfficientNetB7 | 600 | 632 | 47.86087 | - | - | 53.93823 | - | - |
| EfficientNetB0_small | 224 | 256 | 2.39166 | 4.36748 | 6.96002 | 2.3076 | 4.71886 | 7.21888 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# HRNet 系列
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
* [4. 基于 T4 GPU 的预测速度](#4)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 模型介绍
<a name='1'></a>
<a name='1.1'></a>
### 1.1 模型简介
## 1. 概述
HRNet 是 2019 年由微软亚洲研究院提出的一种全新的神经网络,不同于以往的卷积神经网络,该网络在网络深层仍然可以保持高分辨率,因此预测的关键点热图更准确,在空间上也更精确。此外,该网络在对分辨率敏感的其他视觉任务中,如检测、分割等,表现尤为优异。
该系列模型的 FLOPS、参数量以及 T4 GPU 上的预测耗时如下图所示。
......@@ -24,8 +40,9 @@ HRNet 是 2019 年由微软亚洲研究院提出的一种全新的神经网络
目前 PaddleClas 开源的这类模型的预训练模型一共有 7 个,其指标如图所示,其中 HRNet_W48_C 指标精度异常的原因可能是因为网络训练的正常波动。
<a name='2'></a>
## 2. 精度、FLOPS 和参数量
<a name='1.2'></a>
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -40,8 +57,11 @@ HRNet 是 2019 年由微软亚洲研究院提出的一种全新的神经网络
| HRNet_W64_C | 0.793 | 0.946 | 0.795 | 0.946 | 57.830 | 128.060 |
| SE_HRNet_W64_C_ssld | 0.847 | 0.973 | | | 57.830 | 128.970 |
<a name='3'></a>
## 3. 基于 V100 GPU 的预测速度
### 1.3 Benchmark
<a name='1.3.1'></a>
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
|-------------|-----------|-------------------|-------------------|-------------------|-------------------|
......@@ -55,9 +75,9 @@ HRNet 是 2019 年由微软亚洲研究院提出的一种全新的神经网络
| HRNet_W48_C_ssld | 224 | 256 | 11.09 | 17.04 | 27.28 |
| HRNet_W64_C | 224 | 256 | 13.82 | 21.15 | 35.51 |
<a name='1.3.2'></a>
<a name='4'></a>
## 4. 基于 T4 GPU 的预测速度
#### 1.3.2 基于 T4 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP16<br>Batch Size=1<br>(ms) | FP16<br>Batch Size=4<br>(ms) | FP16<br>Batch Size=8<br>(ms) | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
|-------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
......@@ -71,3 +91,68 @@ HRNet 是 2019 年由微软亚洲研究院提出的一种全新的神经网络
| HRNet_W48_C_ssld | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 |
| HRNet_W64_C | 224 | 256 | 15.10428 | 27.68901 | 40.4198 | 17.57527 | 47.9533 | 97.11228 |
| SE_HRNet_W64_C_ssld | 224 | 256 | 32.33651 | 69.31189 | 116.07245 | 31.69770 | 94.99546 | 174.45766 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# HarDNet 系列
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 模型介绍
<a name='1'></a>
## 1. 概述
<a name='1.1'></a>
### 1.1 模型简介
HarDNet(Harmonic DenseNet)是 2019 年由国立清华大学提出的一种全新的神经网络,在低 MAC 和内存流量的条件下实现了高效率。与 FC-DenseNet-103,DenseNet-264,ResNet-50,ResNet-152 和 SSD-VGG 相比,新网络的推理时间减少了 35%,36%,30%,32% 和 45%。我们使用了包括 Nvidia Profiler 和 ARM Scale-Sim 在内的工具来测量内存流量,并验证推理延迟确实与内存流量消耗成正比,并且所提议的网络消耗的内存流量很低。[论文地址](https://arxiv.org/abs/1909.00948)
<a name='2'></a>
<a name='1.2'></a>
## 2. 精度、FLOPS 和参数量
### 1.2 模型指标
| Model | Params (M) | FLOPs (G) | Top-1 (%) | Top-5 (%) |
|:---------------------:|:----------:|:---------:|:---------:|:---------:|
......@@ -22,9 +39,11 @@ HarDNet(Harmonic DenseNet)是 2019 年由国立清华大学提出的一种
| HarDNet39_ds | 3.5 | 0.4 | 71.33 | 89.98 |
| HarDNet68_ds | 4.2 | 0.8 | 73.62 | 91.52 |
<a name='3'></a>
### 1.3 Benchmark
<a name='1.3.1'></a>
## 3. 基于 V100 GPU 的预测速度
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
| ------------ | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
......@@ -32,3 +51,63 @@ HarDNet(Harmonic DenseNet)是 2019 年由国立清华大学提出的一种
| HarDNet85 | 224 | 256 | 6.24 | 14.85 | 20.57 |
| HarDNet39_ds | 224 | 256 | 1.40 | 2.30 | 3.33 |
| HarDNet68_ds | 224 | 256 | 2.26 | 3.34 | 5.06 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/HardDNet/` 中提供了模型的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3)
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
# Inception 系列
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
* [4. 基于 T4 GPU 的预测速度](#4)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
GoogLeNet 是 2014 年由 Google 设计的一种新的神经网络结构,其与 VGG 网络并列成为当年 ImageNet 挑战赛的双雄。GoogLeNet 首次引入 Inception 结构,在网络中堆叠该结构使得网络层数达到了 22 层,这也是卷积网络首次超过 20 层的标志。由于在 Inception 结构中使用了 1x1 的卷积用于通道数降维,并且使用了 Global-pooling 代替传统的多 fc 层加工特征的方式,最终的 GoogLeNet 网络的 FLOPS 和参数量远小于 VGG 网络,成为当时神经网络设计的一道亮丽风景线。
......@@ -19,7 +34,6 @@ Xception 是 Google 继 Inception 后提出的对 InceptionV3 的另一种改进
InceptionV4 是 2016 年由 Google 设计的新的神经网络,当时残差结构风靡一时,但是作者认为仅使用 Inception 结构也可以达到很高的性能。InceptionV4 使用了更多的 Inception module,在 ImageNet 上的精度再创新高。
该系列模型的 FLOPS、参数量以及 T4 GPU 上的预测耗时如下图所示。
![](../../../images/models/T4_benchmark/t4.fp32.bs4.Inception.flops.png)
......@@ -32,10 +46,9 @@ InceptionV4 是 2016 年由 Google 设计的新的神经网络,当时残差结
上图反映了 Xception 系列和 InceptionV4 的精度和其他指标的关系。其中 Xception_deeplab 与论文结构保持一致,Xception 是 PaddleClas 的改进模型,在预测速度基本不变的情况下,精度提升约 0.6%。关于该改进模型的详细介绍正在持续更新中,敬请期待。
<a name='1.2'></a>
<a name='2'></a>
## 2. 精度、FLOPS 和参数量
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -48,10 +61,11 @@ InceptionV4 是 2016 年由 Google 设计的新的神经网络,当时残差结
| InceptionV3 | 0.791 | 0.946 | 0.788 | 0.944 | 11.460 | 23.830 |
| InceptionV4 | 0.808 | 0.953 | 0.800 | 0.950 | 24.570 | 42.680 |
### 1.3 Benchmark
<a name='3'></a>
<a name='1.3.1'></a>
## 3. 基于 V100 GPU 的预测速度
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
|------------------------|-----------|-------------------|------------------------|------------------------|------------------------|
......@@ -63,10 +77,9 @@ InceptionV4 是 2016 年由 Google 设计的新的神经网络,当时残差结
| Xception71 | 299 | 320 | 6.19 | 15.34 | 29.21 |
| InceptionV4 | 299 | 320 | 8.93 | 15.17 | 21.56 |
<a name='1.3.2'></a>
<a name='4'></a>
## 4. 基于 T4 GPU 的预测速度
#### 1.3.2 基于 T4 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP16<br>Batch Size=1<br>(ms) | FP16<br>Batch Size=4<br>(ms) | FP16<br>Batch Size=8<br>(ms) | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
|--------------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
......@@ -78,3 +91,68 @@ InceptionV4 是 2016 年由 Google 设计的新的神经网络,当时残差结
| Xception71 | 299 | 320 | 4.80889 | 13.5624 | 27.18822 | 8.72457 | 31.55549 | 69.31018 |
| InceptionV3 | 299 | 320 | 3.67502 | 6.36071 | 9.82645 | 6.64054 | 13.53630 | 22.17355 |
| InceptionV4 | 299 | 320 | 9.50821 | 13.72104 | 20.27447 | 12.99342 | 25.23416 | 43.56121 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# LeViT
-----
---
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
LeViT 是一种快速推理的、用于图像分类任务的混合神经网络。其设计之初考虑了网络模型在不同的硬件平台上的性能,因此能够更好地反映普遍应用的真实场景。通过大量实验,作者找到了卷积神经网络与 Transformer 体系更好的结合方式,并且提出了 attention-based 方法,用于整合 Transformer 中的位置信息编码。[论文地址](https://arxiv.org/abs/2104.01136)
<a name='2'></a>
<a name='1.2'></a>
## 2. 精度、FLOPS 和参数量
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(M) | Params<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -23,5 +40,68 @@ LeViT 是一种快速推理的、用于图像分类任务的混合神经网络
| LeViT-256 | 0.8085 | 0.9497 | 0.816 | 0.954 | 1120 | 19 |
| LeViT-384 | 0.8191 | 0.9551 | 0.826 | 0.960 | 2353 | 39 |
**注**:与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# MixNet 系列
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
MixNet 是谷歌出的一篇关于轻量级网络的文章,主要工作就在于探索不同大小的卷积核的组合。作者发现目前网络有以下两个问题:
......@@ -17,9 +33,9 @@ MixNet 是谷歌出的一篇关于轻量级网络的文章,主要工作就在
为了解决上面两个问题,文中提出一种新的混合深度分离卷积(MDConv)(mixed depthwise convolution),将不同的核大小混合在一个卷积运算中,并且基于 AutoML 的搜索空间,提出了一系列的网络叫做 MixNets,在 ImageNet 上取得了较好的效果。[论文地址](https://arxiv.org/pdf/1907.09595.pdf)
<a name='2'></a>
<a name='1.2'></a>
## 2. 精度、FLOPS 和参数量
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1| FLOPS<br>(M) | Params<br/>(M) |
|:--:|:--:|:--:|:--:|:--:|----|
......@@ -27,9 +43,11 @@ MixNet 是谷歌出的一篇关于轻量级网络的文章,主要工作就在
| MixNet_M | 77.67 | 93.64 | 77.0 | 357.119 | 5.065 |
| MixNet_L | 78.60 | 94.37 | 78.9 | 579.017 | 7.384 |
<a name='3'></a>
### 1.3 Benchmark
## 3. 基于 V100 GPU 的预测速度
<a name='1.3.1'></a>
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
| -------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
......@@ -38,3 +56,67 @@ MixNet 是谷歌出的一篇关于轻量级网络的文章,主要工作就在
| MixNet_L | 224 | 256 | 3.16 | 5.55 | 8.03 |
关于 Inference speed 等信息,敬请期待。
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# 移动端系列
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 SD855 的预测速度和存储大小](#3)
* [4. 基于 V100 GPU 的预测速度](#4)
* [5. 基于 T4 GPU 的预测速度](#5)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 模型介绍
<a name='1'></a>
<a name='1.1'></a>
### 1.1 模型简介
## 1. 概述
MobileNetV1 是 Google 于 2017 年发布的用于移动设备或嵌入式设备中的网络。该网络将传统的卷积操作替换深度可分离卷积,即 Depthwise 卷积和 Pointwise 卷积的组合,相比传统的卷积操作,该组合可以大大节省参数量和计算量。与此同时,MobileNetV1 也可以用于目标检测、图像分割等其他视觉任务中。
MobileNetV2 是 Google 继 MobileNetV1 提出的一种轻量级网络。相比 MobileNetV1,MobileNetV2 提出了 Linear bottlenecks 与 Inverted residual block 作为网络基本结构,通过大量地堆叠这些基本模块,构成了 MobileNetV2 的网络结构。最终,在 FLOPS 只有 MobileNetV1 的一半的情况下取得了更高的分类精度。
......@@ -32,9 +47,9 @@ GhostNet 是华为于 2020 年提出的一种全新的轻量化网络结构,
目前 PaddleClas 开源的的移动端系列的预训练模型一共有 35 个,其指标如图所示。从图片可以看出,越新的轻量级模型往往有更优的表现,MobileNetV3 代表了目前主流的轻量级神经网络结构。在 MobileNetV3 中,作者为了获得更高的精度,在 global-avg-pooling 后使用了 1x1 的卷积。该操作大幅提升了参数量但对计算量影响不大,所以如果从存储角度评价模型的优异程度,MobileNetV3 优势不是很大,但由于其更小的计算量,使得其有更快的推理速度。此外,我们模型库中的 ssld 蒸馏模型表现优异,从各个考量角度下,都刷新了当前轻量级模型的精度。由于 MobileNetV3 模型结构复杂,分支较多,对 GPU 并不友好,GPU 预测速度不如 MobileNetV1。GhostNet 于 2020 年提出,通过引入 ghost 的网络设计理念,大大降低了计算量和参数量,同时在精度上也超过前期最高的 MobileNetV3 网络结构。
<a name='2'></a>
<a name='1.2'></a>
## 2. 精度、FLOPS 和参数量
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -76,9 +91,11 @@ GhostNet 是华为于 2020 年提出的一种全新的轻量化网络结构,
| GhostNet_x1_3 | 0.757 | 0.925 | 0.757 | 0.927 | 0.440 | 7.300 |
| GhostNet_x1_3_ssld | 0.794 | 0.945 | 0.757 | 0.927 | 0.440 | 7.300 |
<a name='3'></a>
### 1.3 Benchmark
<a name='1.3.1'></a>
## 3. 基于 SD855 的预测速度和存储大小
#### 1.3.1 基于 SD855 的预测速度和存储大小
| Models | SD855 time(ms)<br>bs=1, thread=1 | SD855 time(ms)<br/>bs=1, thread=2 | SD855 time(ms)<br/>bs=1, thread=4 | Storage Size(M) |
|:--:|----|----|----|----|
......@@ -120,9 +137,9 @@ GhostNet 是华为于 2020 年提出的一种全新的轻量化网络结构,
| GhostNet_x1_3 | 19.16 | 12.25 | 9.40 | 29.000 |
| GhostNet_x1_3_ssld | 19.16 | 17.85 | 10.18 | 29.000 |
<a name='4'></a>
<a name='1.3.2'></a>
## 4. 基于 V100 GPU 的预测速度
#### 1.3.2 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
| -------------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
......@@ -164,9 +181,9 @@ GhostNet 是华为于 2020 年提出的一种全新的轻量化网络结构,
| GhostNet_x1_3 | 224 | 256 | 1.84 | 2.88 | 3.94 |
| GhostNet_x1_3_ssld | 224 | 256 | 1.85 | 3.17 | 4.29 |
<a name='5'></a>
<a name='1.3.3'></a>
## 5. 基于 T4 GPU 的预测速度
#### 1.3.3 基于 T4 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
......@@ -205,3 +222,65 @@ GhostNet 是华为于 2020 年提出的一种全新的轻量化网络结构,
| GhostNet_x1_0 | 224 | 256 | 1.69 | 2.73 | 3.81 |
| GhostNet_x1_3 | 224 | 256 | 1.84 | 2.88 | 3.94 |
| GhostNet_x1_3_ssld | 224 | 256 | 1.85 | 3.17 | 4.29 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# MobileviT
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPs 和参数量](#2)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
MobileViT 是一个轻量级的视觉 Transformer 网络,可以用作计算机视觉领域的通用骨干网路。 MobileViT 结合了 CNN 和 Transformer 的优势,可以更好的处理全局特征和局部特征,更好地解决 Transformer 模型缺乏归纳偏置的问题,最终,在同样参数量下,与其他 SOTA 模型相比,在图像分类、目标检测、语义分割任务上都有大幅提升。[论文地址](https://arxiv.org/pdf/2110.02178.pdf)
<a name='2'></a>
<a name='1.2'></a>
## 2. 精度、FLOPs 和参数量
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPs<br>(M) | Params<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| MobileViT_XXS | 0.6867 | 0.8878 | 0.690 | - | 337.24 | 1.28 |
| MobileViT_XS | 0.7454 | 0.9227 | 0.747 | - | 930.75 | 2.33 |
| MobileViT_S | 0.7814 | 0.9413 | 0.783 | - | 1849.35 | 5.59 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/MobileViT/` 中提供了模型的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3)
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
# 其他模型
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
* [4. 基于 T4 GPU 的预测速度](#4)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
2012 年,Alex 等人提出的 AlexNet 网络在 ImageNet 大赛上以远超第二名的成绩夺冠,卷积神经网络乃至深度学习引起了广泛的关注。AlexNet 使用 relu 作为 CNN 的激活函数,解决了 sigmoid 在网络较深时的梯度弥散问题。训练时使用 Dropout 随机丢掉一部分神经元,避免了模型过拟合。网络中使用重叠的最大池化代替了此前 CNN 中普遍使用的平均池化,避免了平均池化的模糊效果,提升了特征的丰富性。从某种意义上说,AlexNet 引爆了神经网络的研究与应用热潮。
SqueezeNet 在 ImageNet-1k 上实现了与 AlexNet 相同的精度,但只用了 1/50 的参数量。该网络的核心是 Fire 模块,Fire 模块通过使用 1x1 的卷积实现通道降维,从而大大节省了参数量。作者通过大量堆叠 Fire 模块组成了 SqueezeNet。
......@@ -18,8 +34,9 @@ VGG 由牛津大学计算机视觉组和 DeepMind 公司研究员一起研发的
DarkNet53 是 YOLO 作者在论文设计的用于目标检测的 backbone,该网络基本由 1x1 与 3x3 卷积构成,共 53 层,取名为 DarkNet53。
<a name='2'></a>
## 2. 精度、FLOPS 和参数量
<a name='1.2'></a>
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -32,10 +49,11 @@ DarkNet53 是 YOLO 作者在论文设计的用于目标检测的 backbone,该
| VGG19 | 0.726 | 0.909 | | | 39.130 | 143.650 |
| DarkNet53 | 0.780 | 0.941 | 0.772 | 0.938 | 18.580 | 41.600 |
### 1.3 Benchmark
<a name='3'></a>
## 3. 基于 V100 GPU 的预测速度
<a name='1.3.1'></a>
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
|---------------------------|-----------|-------------------|-------------------|-------------------|-------------------|
......@@ -48,9 +66,9 @@ DarkNet53 是 YOLO 作者在论文设计的用于目标检测的 backbone,该
| VGG19 | 224 | 256 | 2.93 | 8.28 | 15.21 |
| DarkNet53 | 256 | 256 | 2.79 | 6.42 | 10.89 |
<a name='1.3.2'></a>
<a name='4'></a>
## 基于 T4 GPU 的预测速度
#### 1.3.2 基于 T4 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP16<br>Batch Size=1<br>(ms) | FP16<br>Batch Size=4<br>(ms) | FP16<br>Batch Size=8<br>(ms) | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
|-----------------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
......@@ -62,3 +80,65 @@ DarkNet53 是 YOLO 作者在论文设计的用于目标检测的 backbone,该
| VGG16 | 224 | 256 | 3.13237 | 7.19257 | 12.50913 | 5.61769 | 16.40064 | 32.03939 |
| VGG19 | 224 | 256 | 3.69987 | 8.59168 | 15.07866 | 6.65221 | 20.4334 | 41.55902 |
| DarkNet53 | 256 | 256 | 3.18101 | 5.88419 | 10.14964 | 4.10829 | 12.1714 | 22.15266 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
......@@ -90,7 +90,6 @@ PP-HGNet 与其他模型的比较如下,其中测试机器为 NVIDIA® Tesla®
| SwinTransformer_base | 85.2 | 97.5 | 13.53 |
| <b>PPHGNet_base_ssld<b> | <b>85.00<b>| <b>97.35<b> | <b>5.97<b> |
<a name="2"></a>
## 2. 模型快速体验
......@@ -160,7 +159,6 @@ print(next(result))
[{'class_ids': [8, 7, 86, 82, 81], 'scores': [0.71479, 0.08682, 0.00806, 0.0023, 0.00121], 'label_names': ['hen', 'cock', 'partridge', 'ruffed grouse, partridge, Bonasa umbellus', 'ptarmigan'], 'filename': 'docs/images/inference_deployment/whl_demo.jpg'}]
```
<a name="3"></a>
## 3. 模型训练、评估和预测
......@@ -351,7 +349,7 @@ python3 python/predict_cls.py -c configs/inference_cls.yaml -o Global.inference_
输出结果如下。
```
ILSVRC2012_val_00000010.jpeg: class id(s): [332, 153, 283, 338, 204], score(s): [0.50, 0.05, 0.02, 0.01, 0.01], label_name(s): ['Angora, Angora rabbit', 'Maltese dog, Maltese terrier, Maltese', 'Persian cat', 'guinea pig, Cavia cobaya', 'Lhasa, Lhasa apso']
ILSVRC2012_val_00000010.jpeg: class id(s): [332, 153, 283, 338, 204], score(s): [0.50, 0.05, 0.02, 0.01, 0.01], label_name(s): ['Angora, Angora rabbit', 'Maltese dog, Maltese terrier, Maltese', 'Persian cat', 'guinea pig, Cavia cobaya', 'Lhasa, Lhasa apso']
```
<a name="4.2.2"></a>
......@@ -368,13 +366,12 @@ python3 python/predict_cls.py -c configs/inference_cls.yaml -o Global.inference_
终端中会输出该文件夹内所有图像的分类结果,如下所示。
```
ILSVRC2012_val_00000010.jpeg: class id(s): [332, 153, 283, 338, 204], score(s): [0.50, 0.05, 0.02, 0.01, 0.01], label_name(s): ['Angora, Angora rabbit', 'Maltese dog, Maltese terrier, Maltese', 'Persian cat', 'guinea pig, Cavia cobaya', 'Lhasa, Lhasa apso']
ILSVRC2012_val_00010010.jpeg: class id(s): [626, 622, 531, 487, 633], score(s): [0.68, 0.02, 0.02, 0.02, 0.02], label_name(s): ['lighter, light, igniter, ignitor', 'lens cap, lens cover', 'digital watch', 'cellular telephone, cellular phone, cellphone, cell, mobile phone', "loupe, jeweler's loupe"]
ILSVRC2012_val_00020010.jpeg: class id(s): [178, 211, 171, 246, 741], score(s): [0.82, 0.00, 0.00, 0.00, 0.00], label_name(s): ['Weimaraner', 'vizsla, Hungarian pointer', 'Italian greyhound', 'Great Dane', 'prayer rug, prayer mat']
ILSVRC2012_val_00030010.jpeg: class id(s): [80, 83, 136, 23, 93], score(s): [0.84, 0.00, 0.00, 0.00, 0.00], label_name(s): ['black grouse', 'prairie chicken, prairie grouse, prairie fowl', 'European gallinule, Porphyrio porphyrio', 'vulture', 'hornbill']
ILSVRC2012_val_00000010.jpeg: class id(s): [332, 153, 283, 338, 204], score(s): [0.50, 0.05, 0.02, 0.01, 0.01], label_name(s): ['Angora, Angora rabbit', 'Maltese dog, Maltese terrier, Maltese', 'Persian cat', 'guinea pig, Cavia cobaya', 'Lhasa, Lhasa apso']
ILSVRC2012_val_00010010.jpeg: class id(s): [626, 622, 531, 487, 633], score(s): [0.68, 0.02, 0.02, 0.02, 0.02], label_name(s): ['lighter, light, igniter, ignitor', 'lens cap, lens cover', 'digital watch', 'cellular telephone, cellular phone, cellphone, cell, mobile phone', "loupe, jeweler's loupe"]
ILSVRC2012_val_00020010.jpeg: class id(s): [178, 211, 171, 246, 741], score(s): [0.82, 0.00, 0.00, 0.00, 0.00], label_name(s): ['Weimaraner', 'vizsla, Hungarian pointer', 'Italian greyhound', 'Great Dane', 'prayer rug, prayer mat']
ILSVRC2012_val_00030010.jpeg: class id(s): [80, 83, 136, 23, 93], score(s): [0.84, 0.00, 0.00, 0.00, 0.00], label_name(s): ['black grouse', 'prairie chicken, prairie grouse, prairie fowl', 'European gallinule, Porphyrio porphyrio', 'vulture', 'hornbill']
```
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
......
# PVTV2
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
PVTV2 是 VisionTransformer 系列模型,该模型基于 PVT(Pyramid Vision Transformer)改进得到,PVT 模型使用 Transformer 结构构建了特征金字塔网络。PVTV2 的主要创新点有:1. 带 overlap 的 Patch embeding;2. 结合卷积神经网络;3. 注意力模块为线性复杂度。[论文地址](https://arxiv.org/pdf/2106.13797.pdf)
<a name='2'></a>
## 2. 精度、FLOPS 和参数量
<a name='1.2'></a>
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Params<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| PVT_V2_B0 | 0.7052 | 0.9016 | 0.705 | - | 0.53 | 3.7 |
| PVT_V2_B1 | 0.7869 | 0.9450 | 0.787 | - | 2.0 | 14.0 |
| PVT_V2_B2 | 0.8206 | 0.9599 | 0.820 | - | 3.9 | 25.4 |
| PVT_V2_B3 | 0.8310 | 0.9648 | 0.831 | - | 6.7 | 45.2 |
| PVT_V2_B4 | 0.8361 | 0.9666 | 0.836 | - | 9.8 | 62.6 |
| PVT_V2_B5 | 0.8374 | 0.9662 | 0.838 | - | 11.4 | 82.0 |
| PVT_V2_B2_Linear | 0.8205 | 0.9605 | 0.820 | - | 3.8 | 22.6 |
| PVT_V2_B0 | 0.705 | 0.902 | 0.705 | - | 0.53 | 3.7 |
| PVT_V2_B1 | 0.787 | 0.945 | 0.787 | - | 2.0 | 14.0 |
| PVT_V2_B2 | 0.821 | 0.960 | 0.820 | - | 3.9 | 25.4 |
| PVT_V2_B3 | 0.831 | 0.965 | 0.831 | - | 6.7 | 45.2 |
| PVT_V2_B4 | 0.836 | 0.967 | 0.836 | - | 9.8 | 62.6 |
| PVT_V2_B5 | 0.837 | 0.966 | 0.838 | - | 11.4 | 82.0 |
| PVT_V2_B2_Linear | 0.821 | 0.961 | 0.821 | - | 3.8 | 22.6 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/PVTV2/` 中提供了模型的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3)
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
# ReXNet 系列
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
ReXNet 是 NAVER 集团 ClovaAI 研发中心基于一种网络架构设计新范式而构建的网络。针对现有网络中存在的 `Representational Bottleneck` 问题,作者提出了一组新的设计原则。作者认为传统的网络架构设计范式会产生表达瓶颈,进而影响模型的性能。为研究此问题,作者研究了上万个随机网络生成特征的 `matric rank`,同时进一步研究了网络层中通道配置方案。基于此,作者提出了一组简单而有效的设计原则,以消除表达瓶颈问题。[论文地址](https://arxiv.org/pdf/2007.00992.pdf)
<a name='1.1'></a>
<a name='2'></a>
### 1.1 模型简介
ReXNet 是 NAVER 集团 ClovaAI 研发中心基于一种网络架构设计新范式而构建的网络。针对现有网络中存在的 `Representational Bottleneck` 问题,作者提出了一组新的设计原则。作者认为传统的网络架构设计范式会产生表达瓶颈,进而影响模型的性能。为研究此问题,作者研究了上万个随机网络生成特征的 `matric rank`,同时进一步研究了网络层中通道配置方案。基于此,作者提出了一组简单而有效的设计原则,以消除表达瓶颈问题。[论文地址](https://arxiv.org/pdf/2007.00992.pdf)
## 2. 精度、FLOPS 和参数量
<a name='1.2'></a>
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1| FLOPS<br/>(G) | Params<br/>(M) |
|:--:|:--:|:--:|:--:|:--:|----|
......@@ -25,9 +40,11 @@ ReXNet 是 NAVER 集团 ClovaAI 研发中心基于一种网络架构设计新范
| ReXNet_2_0 | 81.22 | 95.36 | 81.6 | 1.561 | 16.449 |
| ReXNet_3_0 | 82.09 | 96.12 | 82.8 | 3.445 | 34.833 |
<a name='3'></a>
### 1.3 Benchmark
<a name='1.3.1'></a>
## 3. 基于 V100 GPU 的预测速度
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
| ---------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
......@@ -38,3 +55,67 @@ ReXNet 是 NAVER 集团 ClovaAI 研发中心基于一种网络架构设计新范
| ReXNet_3_0 | 224 | 256 | 5.74 | 9.49 | 13.62 |
关于 Inference speed 等信息,敬请期待。
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# RedNet 系列
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
在 ResNet 的 Backbone 和 Backbone 的所有 Bottleneck 位置上使用 Involution 替换掉了卷积,但保留了所有的卷积用于通道映射和融合。这些精心重新设计的实体联合起来,形成了一种新的高效 Backbone 网络,称为 RedNet。[论文地址](https://arxiv.org/abs/2103.06255)
<a name='2'></a>
## 2. 精度、FLOPS 和参数量
<a name='1.2'></a>
### 1.2 模型指标
| Model | Params (M) | FLOPs (G) | Top-1 (%) | Top-5 (%) |
|:---------------------:|:----------:|:---------:|:---------:|:---------:|
......@@ -22,9 +40,11 @@
| RedNet101 | 25.7 | 4.7 | 78.94 | 94.36 |
| RedNet152 | 34.0 | 6.8 | 79.17 | 94.40 |
<a name='3'></a>
### 1.3 Benchmark
## 3. 基于 V100 GPU 的预测速度
<a name='1.3.1'></a>
#### 1.3.1 基于 V100 GPU 的预测速度
| 模型 | Crop Size | Resize Short Size | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 |
| --------- | --------- | ----------------- | ---------------- | ---------------- | ----------------- |
......@@ -33,3 +53,63 @@
| RedNet50 | 224 | 256 | 8.04 | 27.71 | 53.73 |
| RedNet101 | 224 | 256 | 13.07 | 44.12 | 83.28 |
| RedNet152 | 224 | 256 | 18.66 | 63.27 | 119.48 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/RedNet/` 中提供了模型的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3)
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
# RepVGG 系列
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
RepVGG(Making VGG-style ConvNets Great Again)系列模型是由清华大学(丁贵广团队)、旷视科技(孙剑等人)、港科大和阿伯里斯特威斯大学在 2021 年提出的一个简单但强大的卷积神经网络架构,该架构具有类似于 VGG 的推理时间主体,该主体仅由 3x3 卷积和 ReLU 的堆栈组成,而训练时间模型具有多分支拓扑。训练时间和推理时间架构的这种解耦是通过结构重新参数化(re-parameterization)技术实现的,因此该模型称为 RepVGG。[论文地址](https://arxiv.org/abs/2101.03697)
<a name='2'></a>
## 2. 精度、FLOPS 和参数量
<a name='1.2'></a>
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1| FLOPS<br>(G) |
|:--:|:--:|:--:|:--:|:--:|
......@@ -27,3 +46,67 @@ RepVGG(Making VGG-style ConvNets Great Again)系列模型是由清华大学(丁
| RepVGG_B3g4 | 0.7965 | 0.9485 | 0.8021 | |
关于 Params、FLOPs、Inference speed 等信息,敬请期待。
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# ResNeSt 与 RegNet 系列
----
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
* [4. 基于 T4 GPU 的预测速度](#4)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
ResNeSt 系列模型是在 2020 年提出的,在原有的 resnet 网络结构上做了改进,通过引入 K 个 Group 和在不同 Group 中加入类似于 SEBlock 的 attention 模块,使得精度相比于基础模型 ResNet 有了大幅度的提高,且参数量和 flops 与基础的 ResNet 基本保持一致。
RegNet 是由 facebook 于 2020 年提出,旨在深化设计空间理念的概念,在 AnyNetX 的基础上逐步改进,通过加入共享瓶颈 ratio、共享组宽度、调整网络深度与宽度等策略,最终实现简化设计空间结构、提高设计空间的可解释性、改善设计空间的质量,并保持设计空间的模型多样性的目的。最终设计出的模型在类似的条件下,性能还要优于 EfficientNet,并且在 GPU 上的速度提高了 5 倍。
<a name='2'></a>
<a name='1.2'></a>
## 2. 精度、FLOPS 和参数量
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -25,9 +40,11 @@ RegNet 是由 facebook 于 2020 年提出,旨在深化设计空间理念的概
| ResNeSt50 | 0.8083 | 0.9542| 0.8113 | -| 10.78 | 27.5 |
| RegNetX_4GF | 0.7850 | 0.9416| 0.7860 | -| 8.0 | 22.1 |
<a name='3'></a>
### 1.3 Benchmark
## 3. 基于 V100 GPU 的预测速度
<a name='1.3.1'></a>
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
| ---------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
......@@ -35,12 +52,77 @@ RegNet 是由 facebook 于 2020 年提出,旨在深化设计空间理念的概
| ResNeSt50 | 224 | 256 | 7.36 | 10.23 | 13.84 |
| RegNetX_4GF | 224 | 256 | 6.46 | 8.48 | 11.45 |
<a name='4'></a>
<a name='1.3.2'></a>
## 4. 基于 T4 GPU 的预测速度
#### 1.3.2 基于 T4 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP16<br>Batch Size=1<br>(ms) | FP16<br>Batch Size=4<br>(ms) | FP16<br>Batch Size=8<br>(ms) | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
|--------------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| ResNeSt50_fast_1s1x64d | 224 | 256 | 3.46466 | 5.56647 | 9.11848 | 3.45405 | 8.72680 | 15.48710 |
| ResNeSt50 | 224 | 256 | 7.05851 | 8.97676 | 13.34704 | 6.16248 | 12.0633 | 21.49936 |
| RegNetX_4GF | 224 | 256 | 6.69042 | 8.01664 | 11.60608 | 6.46478 | 11.19862 | 16.89089 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# ResNet 及其 Vd 系列
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
* [4. 基于 T4 GPU 的预测速度](#4)
## 目录
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
......
# SEResNeXt 与 Res2Net 系列
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于 V100 GPU 的预测速度](#3)
* [4. 基于 T4 GPU 的预测速度](#4)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
ResNeXt 是 ResNet 的典型变种网络之一,ResNeXt 发表于 2017 年的 CVPR 会议。在此之前,提升模型精度的方法主要集中在将网络变深或者变宽,这样增加了参数量和计算量,推理速度也会相应变慢。ResNeXt 结构提出了通道分组(cardinality)的概念,作者通过实验发现增加通道的组数比增加深度和宽度更有效。其可以在不增加参数复杂度的前提下提高准确率,同时还减少了参数的数量,所以是比较成功的 ResNet 的变种。
SENet 是 2017 年 ImageNet 分类比赛的冠军方案,其提出了一个全新的 SE 结构,该结构可以迁移到任何其他网络中,其通过控制 scale 的大小,把每个通道间重要的特征增强,不重要的特征减弱,从而让提取的特征指向性更强。
......@@ -31,10 +46,9 @@ Res2Net 是 2019 年提出的一种全新的对 ResNet 的改进方案,该方
目前 PaddleClas 开源的这三类的预训练模型一共有 24 个,其指标如图所示,从图中可以看出,在同样 Flops 和 Params 下,改进版的模型往往有更高的精度,但是推理速度往往不如 ResNet 系列。另一方面,Res2Net 表现也较为优秀,相比 ResNeXt 中的 group 操作、SEResNet 中的 SE 结构操作,Res2Net 在相同 Flops、Params 和推理速度下往往精度更佳。
<a name='1.2'></a>
<a name='2'></a>
## 2. 精度、FLOPS 和参数量
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -66,10 +80,11 @@ Res2Net 是 2019 年提出的一种全新的对 ResNet 的改进方案,该方
| SE_ResNeXt101_32x4d | 0.7939 | 0.9443 | 0.793 | 0.950 | 15.020 | 46.280 |
| SENet154_vd | 0.814 | 0.955 | | | 45.830 | 114.290 |
### 1.3 Benchmark
<a name='3'></a>
<a name='1.3.1'></a>
## 3. 基于 V100 GPU 的预测速度
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
|-----------------------|-----------|-------------------|-----------------------|-----------------------|-----------------------|
......@@ -101,10 +116,9 @@ Res2Net 是 2019 年提出的一种全新的对 ResNet 的改进方案,该方
| Res2Net101_vd_26w_4s_ssld | 224 | 256 | 6.33 | 11.02 | 16.11 |
| Res2Net200_vd_26w_4s_ssld | 224 | 256 | 11.47 | 19.75 | 28.83 |
<a name='1.3.1'></a>
<a name='4'></a>
## 4. 基于 T4 GPU 的预测速度
#### 1.3.1 基于 T4 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP16<br>Batch Size=1<br>(ms) | FP16<br>Batch Size=4<br>(ms) | FP16<br>Batch Size=8<br>(ms) | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
|-----------------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
......@@ -132,3 +146,67 @@ Res2Net 是 2019 年提出的一种全新的对 ResNet 的改进方案,该方
| SE_ResNeXt50_vd_32x4d | 224 | 256 | 9.25016 | 11.85045 | 25.57004 | 9.17134 | 14.76192 | 19.914 |
| SE_ResNeXt101_32x4d | 224 | 256 | 19.34455 | 20.6104 | 32.20432 | 18.82604 | 25.31814 | 41.97758 |
| SENet154_vd | 224 | 256 | 49.85733 | 54.37267 | 74.70447 | 53.79794 | 66.31684 | 121.59885 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# SwinTransformer
-----
## 目录
- [1. 模型介绍](#1)
......@@ -23,11 +23,13 @@
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算机视觉领域的通用骨干网路。SwinTransformer 由移动窗口(shifted windows)表示的层次 Transformer 结构组成。移动窗口将自注意计算限制在非重叠的局部窗口上,同时允许跨窗口连接,从而提高了网络性能。[论文地址](https://arxiv.org/abs/2103.14030)
<a name='2'></a>
<a name='1.2'></a>
### 1.2 模型指标
......@@ -44,10 +46,14 @@ Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
<a name='3'></a>
**注**:与 Reference 的精度差异源于数据预处理不同。
<a name='1.3'></a>
### 1.3 Benchmark
<a name='1.3.1'></a>
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Size | Latency(ms)<br>bs=1 | Latency(ms)<br>bs=4 | Latency(ms)<br>bs=8 |
......@@ -65,7 +71,6 @@ Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算
**备注:** 精度类型为 FP32,推理过程使用 TensorRT。
<a name="2"></a>
## 2. 模型快速体验
......@@ -76,12 +81,10 @@ Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
......@@ -128,4 +131,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
# TNT 系列
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
TNT(Transformer-iN-Transformer)系列模型由华为诺亚于 2021 年提出,用于对 patch 级别和 pixel 级别的表示进行建模。在每个 TNT 块中,outer transformer block 用于处理 patch 嵌入,inner transformer block 从 pixel 嵌入中提取局部特征。通过线性变换层将 pixel 级特征投影到 patch 嵌入空间,然后加入到 patch 中。通过对 TNT 块的叠加,建立了用于图像识别的 TNT 模型。在 ImageNet 基准测试和下游任务上的实验证明了该 TNT 体系结构的优越性和有效性。例如,在计算量相当的情况下 TNT 能在 ImageNet 上达到 81.3% 的 top-1 精度,比 DeiT 高 1.5%。[论文地址](https://arxiv.org/abs/2103.00112)
<a name='2'></a>
<a name='1.2'></a>
## 2. 精度、FLOPS 和参数量
### 1.2 模型指标
| Model | Params (M) | FLOPs (G) | Top-1 (%) | Top-5 (%) |
|:---------------------:|:----------:|:---------:|:---------:|:---------:|
| TNT_small | 23.8 | 5.2 | 81.21 | 95.63 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# Twins
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于V100 GPU 的预测速度](#3)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
Twins 网络包括 Twins-PCPVT 和 Twins-SVT,其重点对空间注意力机制进行了精心设计,得到了简单却更为有效的方案。由于该体系结构仅涉及矩阵乘法,而目前的深度学习框架中对矩阵乘法有较高的优化程度,因此该体系结构十分高效且易于实现。并且,该体系结构在图像分类、目标检测和语义分割等多种下游视觉任务中都能够取得优异的性能。[论文地址](https://arxiv.org/abs/2104.13840)
<a name='2'></a>
<a name='1.2'></a>
## 2. 精度、FLOPs 和参数量
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPs<br>(G) | Params<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -24,9 +41,11 @@ Twins 网络包括 Twins-PCPVT 和 Twins-SVT,其重点对空间注意力机制
| alt_gvt_base | 0.8315 | 0.9629 | 0.832 | - | 8.3 | 56 |
| alt_gvt_large | 0.8364 | 0.9651 | 0.837 | - | 14.8 | 99.2 |
<a name='3'></a>
### 1.3 Benchmark
<a name='1.3.1'></a>
## 3. 基于 V100 GPU 的预测速度
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
| ------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
......@@ -36,3 +55,67 @@ Twins 网络包括 Twins-PCPVT 和 Twins-SVT,其重点对空间注意力机制
| alt_gvt_small | 224 | 256 | 6.94 | 9.01 | 12.27 |
| alt_gvt_base | 224 | 256 | 9.37 | 15.02 | 24.54 |
| alt_gvt_large | 224 | 256 | 11.76 | 22.08 | 35.12 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
# ViT 与 DeiT 系列
---
-----
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于V100 GPU 的预测速度](#3)
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 概述
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
ViT(Vision Transformer)系列模型是 Google 在 2020 年提出的,该模型仅使用标准的 Transformer 结构,完全抛弃了卷积结构,将图像拆分为多个 patch 后再输入到 Transformer 中,展示了 Transformer 在 CV 领域的潜力。[论文地址](https://arxiv.org/abs/2010.11929)
DeiT(Data-efficient Image Transformers)系列模型是由 FaceBook 在 2020 年底提出的,针对 ViT 模型需要大规模数据集训练的问题进行了改进,最终在 ImageNet 上取得了 83.1%的 Top1 精度。并且使用卷积模型作为教师模型,针对该模型进行知识蒸馏,在 ImageNet 数据集上可以达到 85.2% 的 Top1 精度。[论文地址](https://arxiv.org/abs/2012.12877)
<a name='1.2'></a>
<a name='2'></a>
## 2. 精度、FLOPS 和参数量
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Params<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
......@@ -41,9 +56,11 @@ DeiT(Data-efficient Image Transformers)系列模型是由 FaceBook 在 2020
| DeiT_base_distilled_patch16_224 | 0.8330 | 0.9647 | 0.834 | 0.965 | 16.93 | 87.18 |
| DeiT_base_distilled_patch16_384 | 0.8520 | 0.9720 | 0.852 | 0.972 | 49.43 | 87.18 |
<a name='3'></a>
### 1.3 Benchmark
<a name='1.3.1'></a>
## 3. 基于 V100 GPU 的预测速度
#### 1.3.1 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
| -------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
......@@ -65,3 +82,63 @@ DeiT(Data-efficient Image Transformers)系列模型是由 FaceBook 在 2020
| DeiT_small_<br>distilled_patch16_224 | 256 | 224 | 3.70 | 6.20 | 10.53 |
| DeiT_base_<br>distilled_patch16_224 | 256 | 224 | 6.17 | 14.94 | 28.58 |
| DeiT_base_<br>distilled_patch16_384 | 384 | 384 | 14.12 | 48.76 | 97.09 |
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/DeiT/` 中提供了模型的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3)
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册