se_resnet_vd.py 12.7 KB
Newer Older
W
WuHaobo 已提交
1
#
2 3 4
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
5 6 7
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
8 9 10 11 12
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
13 14 15 16 17

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

18
import numpy as np
W
WuHaobo 已提交
19
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
20 21 22
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
23 24
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
25
from paddle.nn.initializer import Uniform
26 27

import math
W
WuHaobo 已提交
28

C
cuicheng01 已提交
29 30 31 32 33 34 35 36 37 38
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
              "SE_ResNet18_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams",
              "SE_ResNet34_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams",
              "SE_ResNet50_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams",

             }

__all__ = list(MODEL_URLS.keys())
W
WuHaobo 已提交
39 40


littletomatodonkey's avatar
littletomatodonkey 已提交
41
class ConvBNLayer(nn.Layer):
42 43 44 45 46 47 48 49 50 51
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
            act=None,
            name=None, ):
52 53 54
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
55
        self._pool2d_avg = AvgPool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
56 57
            kernel_size=2, stride=2, padding=0, ceil_mode=True)

58
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
59 60 61
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
62
            stride=stride,
W
WuHaobo 已提交
63 64
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
65
            weight_attr=ParamAttr(name=name + "_weights"),
66
            bias_attr=False)
W
WuHaobo 已提交
67 68 69 70
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
71 72
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
73 74 75 76
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
77
            moving_variance_name=bn_name + '_variance')
W
WuHaobo 已提交
78

79 80 81 82 83 84 85 86
    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
87
class BottleneckBlock(nn.Layer):
88 89 90 91 92 93 94
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 reduction_ratio=16,
95
                 name=None):
96 97 98 99
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
100 101 102
            num_filters=num_filters,
            filter_size=1,
            act='relu',
103
            name=name + "_branch2a")
104 105
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
106 107 108 109
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
110
            name=name + "_branch2b")
111 112
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
113 114 115
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
116
            name=name + "_branch2c")
117
        self.scale = SELayer(
W
WuHaobo 已提交
118
            num_channels=num_filters * 4,
119
            num_filters=num_filters * 4,
W
WuHaobo 已提交
120
            reduction_ratio=reduction_ratio,
121
            name='fc_' + name)
W
WuHaobo 已提交
122

123 124 125 126 127 128 129
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
130
                name=name + "_branch1")
131 132

        self.shortcut = shortcut
W
WuHaobo 已提交
133

134 135 136 137 138
    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)
W
WuHaobo 已提交
139

140 141 142 143
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
144 145
        y = paddle.add(x=short, y=scale)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
146
        return y
147 148


littletomatodonkey's avatar
littletomatodonkey 已提交
149
class BasicBlock(nn.Layer):
150 151 152 153 154 155 156
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 reduction_ratio=16,
157
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
158
        super(BasicBlock, self).__init__()
159 160 161
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
162 163 164
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
165
            act='relu',
166
            name=name + "_branch2a")
167 168
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
169 170 171
            num_filters=num_filters,
            filter_size=3,
            act=None,
172
            name=name + "_branch2b")
173 174

        self.scale = SELayer(
W
WuHaobo 已提交
175
            num_channels=num_filters,
176
            num_filters=num_filters,
W
WuHaobo 已提交
177
            reduction_ratio=reduction_ratio,
178
            name='fc_' + name)
179 180 181 182 183 184 185 186

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
187
                name=name + "_branch1")
188 189 190 191 192 193 194 195 196 197 198 199

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        scale = self.scale(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
200 201
        y = paddle.add(x=short, y=scale)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
202
        return y
203 204


littletomatodonkey's avatar
littletomatodonkey 已提交
205
class SELayer(nn.Layer):
206
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
207 208
        super(SELayer, self).__init__()

209
        self.pool2d_gap = AdaptiveAvgPool2D(1)
210 211 212 213 214 215 216 217

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
littletomatodonkey's avatar
littletomatodonkey 已提交
218 219
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
W
WuHaobo 已提交
220
            bias_attr=ParamAttr(name=name + '_sqz_offset'))
221 222 223 224 225

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
littletomatodonkey's avatar
littletomatodonkey 已提交
226 227
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
W
WuHaobo 已提交
228 229
            bias_attr=ParamAttr(name=name + '_exc_offset'))

230 231
    def forward(self, input):
        pool = self.pool2d_gap(input)
L
littletomatodonkey 已提交
232
        pool = paddle.squeeze(pool, axis=[2, 3])
233
        squeeze = self.squeeze(pool)
littletomatodonkey's avatar
littletomatodonkey 已提交
234
        squeeze = F.relu(squeeze)
235
        excitation = self.excitation(squeeze)
littletomatodonkey's avatar
littletomatodonkey 已提交
236
        excitation = F.sigmoid(excitation)
L
littletomatodonkey 已提交
237
        excitation = paddle.unsqueeze(excitation, axis=[2, 3])
238 239
        out = input * excitation
        return out
W
WuHaobo 已提交
240

241

littletomatodonkey's avatar
littletomatodonkey 已提交
242
class SE_ResNet_vd(nn.Layer):
243
    def __init__(self, layers=50, class_dim=1000):
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        super(SE_ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
267
            num_channels=3,
268 269 270 271
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
272
            name="conv1_1")
273 274 275 276 277 278
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
279
            name="conv1_2")
280 281 282 283 284 285
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
286 287
            name="conv1_3")
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
310
                            name=conv_name))
311 312 313 314 315 316 317
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
318
                    basic_block = self.add_sublayer(
319
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
320
                        BasicBlock(
321 322 323 324 325 326 327
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
328
                    self.block_list.append(basic_block)
329 330
                    shortcut = True

331
        self.pool2d_avg = AdaptiveAvgPool2D(1)
332 333 334 335 336 337 338 339

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
340 341
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc6_weights"),
342 343 344 345 346 347 348 349 350 351
            bias_attr=ParamAttr(name="fc6_offset"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
352
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
353 354 355
        y = self.out(y)
        return y

C
cuicheng01 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )
    

def SE_ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
    model = SE_ResNet_vd(layers=18, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["SE_ResNet18_vd"], use_ssld=use_ssld)
W
WuHaobo 已提交
373 374 375
    return model


C
cuicheng01 已提交
376 377 378
def SE_ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
    model = SE_ResNet_vd(layers=34, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["SE_ResNet34_vd"], use_ssld=use_ssld)
W
WuHaobo 已提交
379 380 381
    return model


C
cuicheng01 已提交
382 383 384
def SE_ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
    model = SE_ResNet_vd(layers=50, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["SE_ResNet50_vd"], use_ssld=use_ssld)
W
WuHaobo 已提交
385
    return model