py_infer.py 3.2 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
W
WuHaobo 已提交
19 20 21 22 23

import utils
import argparse
import numpy as np

L
littletomatodonkey 已提交
24
import paddle
W
WuHaobo 已提交
25 26
import paddle.fluid as fluid

27 28
from ppcls.utils.check import enable_static_mode

W
WuHaobo 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument("-i", "--image_file", type=str)
    parser.add_argument("-d", "--model_dir", type=str)
    parser.add_argument("-m", "--model_file", type=str)
    parser.add_argument("-p", "--params_file", type=str)
    parser.add_argument("--use_gpu", type=str2bool, default=True)

    return parser.parse_args()


def create_predictor(args):
    if args.use_gpu:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    exe = fluid.Executor(place)
    [program, feed_names, fetch_lists] = fluid.io.load_inference_model(
        args.model_dir,
        exe,
        model_filename=args.model_file,
        params_filename=args.params_file)
    compiled_program = fluid.compiler.CompiledProgram(program)

    return exe, compiled_program, feed_names, fetch_lists


def create_operators():
    size = 224
    img_mean = [0.485, 0.456, 0.406]
    img_std = [0.229, 0.224, 0.225]
    img_scale = 1.0 / 255.0

    decode_op = utils.DecodeImage()
    resize_op = utils.ResizeImage(resize_short=256)
    crop_op = utils.CropImage(size=(size, size))
    normalize_op = utils.NormalizeImage(
        scale=img_scale, mean=img_mean, std=img_std)
    totensor_op = utils.ToTensor()

    return [decode_op, resize_op, crop_op, normalize_op, totensor_op]


def preprocess(fname, ops):
W
WuHaobo 已提交
78
    data = open(fname, 'rb').read()
W
WuHaobo 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    for op in ops:
        data = op(data)

    return data


def postprocess(outputs, topk=5):
    output = outputs[0]
    prob = np.array(output).flatten()
    index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
    return zip(index, prob[index])


def main():
    args = parse_args()
    operators = create_operators()
    exe, program, feed_names, fetch_lists = create_predictor(args)

    data = preprocess(args.image_file, operators)
littletomatodonkey's avatar
littletomatodonkey 已提交
98
    data = np.expand_dims(data, axis=0)
W
WuHaobo 已提交
99 100 101 102 103 104 105 106 107 108 109
    outputs = exe.run(program,
                      feed={feed_names[0]: data},
                      fetch_list=fetch_lists,
                      return_numpy=False)
    probs = postprocess(outputs)

    for idx, prob in probs:
        print("class id: {:d}, probability: {:.4f}".format(idx, prob))


if __name__ == "__main__":
110
    enable_static_mode()
W
WuHaobo 已提交
111
    main()