py_infer.py 3.0 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import utils
import argparse
import numpy as np

L
littletomatodonkey 已提交
19
import paddle
W
WuHaobo 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
import paddle.fluid as fluid


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument("-i", "--image_file", type=str)
    parser.add_argument("-d", "--model_dir", type=str)
    parser.add_argument("-m", "--model_file", type=str)
    parser.add_argument("-p", "--params_file", type=str)
    parser.add_argument("--use_gpu", type=str2bool, default=True)

    return parser.parse_args()


def create_predictor(args):
    if args.use_gpu:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    exe = fluid.Executor(place)
    [program, feed_names, fetch_lists] = fluid.io.load_inference_model(
        args.model_dir,
        exe,
        model_filename=args.model_file,
        params_filename=args.params_file)
    compiled_program = fluid.compiler.CompiledProgram(program)

    return exe, compiled_program, feed_names, fetch_lists


def create_operators():
    size = 224
    img_mean = [0.485, 0.456, 0.406]
    img_std = [0.229, 0.224, 0.225]
    img_scale = 1.0 / 255.0

    decode_op = utils.DecodeImage()
    resize_op = utils.ResizeImage(resize_short=256)
    crop_op = utils.CropImage(size=(size, size))
    normalize_op = utils.NormalizeImage(
        scale=img_scale, mean=img_mean, std=img_std)
    totensor_op = utils.ToTensor()

    return [decode_op, resize_op, crop_op, normalize_op, totensor_op]


def preprocess(fname, ops):
W
WuHaobo 已提交
71
    data = open(fname, 'rb').read()
W
WuHaobo 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    for op in ops:
        data = op(data)

    return data


def postprocess(outputs, topk=5):
    output = outputs[0]
    prob = np.array(output).flatten()
    index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
    return zip(index, prob[index])


def main():
    args = parse_args()
    operators = create_operators()
    exe, program, feed_names, fetch_lists = create_predictor(args)

    data = preprocess(args.image_file, operators)
littletomatodonkey's avatar
littletomatodonkey 已提交
91
    data = np.expand_dims(data, axis=0)
W
WuHaobo 已提交
92 93 94 95 96 97 98 99 100 101 102
    outputs = exe.run(program,
                      feed={feed_names[0]: data},
                      fetch_list=fetch_lists,
                      return_numpy=False)
    probs = postprocess(outputs)

    for idx, prob in probs:
        print("class id: {:d}, probability: {:.4f}".format(idx, prob))


if __name__ == "__main__":
L
littletomatodonkey 已提交
103
    paddle.enable_static()
W
WuHaobo 已提交
104
    main()