train.py 4.3 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
add ad  
WuHaobo 已提交
14 15

from __future__ import absolute_import
littletomatodonkey's avatar
littletomatodonkey 已提交
16 17
from paddle.distributed import ParallelEnv
import paddle
18
from ppcls.data import Reader
littletomatodonkey's avatar
littletomatodonkey 已提交
19 20 21 22
from ppcls.utils.config import get_config
from ppcls.utils.save_load import init_model, save_model
from ppcls.utils import logger
import program
W
add ad  
WuHaobo 已提交
23 24 25
from __future__ import division
from __future__ import print_function

W
WuHaobo 已提交
26 27
import argparse
import os
28 29 30 31
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
W
WuHaobo 已提交
32 33 34 35 36 37 38 39


def parse_args():
    parser = argparse.ArgumentParser("PaddleClas train script")
    parser.add_argument(
        '-c',
        '--config',
        type=str,
W
WuHaobo 已提交
40
        default='configs/ResNet/ResNet50.yaml',
W
WuHaobo 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53
        help='config file path')
    parser.add_argument(
        '-o',
        '--override',
        action='append',
        default=[],
        help='config options to be overridden')
    args = parser.parse_args()
    return args


def main(args):
    config = get_config(args.config, overrides=args.override, show=True)
W
WuHaobo 已提交
54
    # assign the place
55 56
    use_gpu = config.get("use_gpu", True)
    if use_gpu:
littletomatodonkey's avatar
littletomatodonkey 已提交
57 58
        gpu_id = ParallelEnv().dev_id
        place = paddle.CUDAPlace(gpu_id)
59
    else:
littletomatodonkey's avatar
littletomatodonkey 已提交
60
        place = paddle.CPUPlace()
W
WuHaobo 已提交
61

62 63 64
    use_data_parallel = int(os.getenv("PADDLE_TRAINERS_NUM", 1)) != 1
    config["use_data_parallel"] = use_data_parallel

littletomatodonkey's avatar
littletomatodonkey 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    paddle.disable_static(place)

    net = program.create_model(config.ARCHITECTURE, config.classes_num)

    optimizer = program.create_optimizer(
        config, parameter_list=net.parameters())

    if config["use_data_parallel"]:
        strategy = paddle.distributed.init_parallel_env()
        net = paddle.DataParallel(net, strategy)

    # load model from checkpoint or pretrained model
    init_model(config, net, optimizer)

    train_dataloader = program.create_dataloader()
    train_reader = Reader(config, 'train')()
    train_dataloader.set_sample_list_generator(train_reader, place)

    if config.validate:
        valid_dataloader = program.create_dataloader()
        valid_reader = Reader(config, 'valid')()
        valid_dataloader.set_sample_list_generator(valid_reader, place)

    best_top1_acc = 0.0  # best top1 acc record
    for epoch_id in range(config.epochs):
        net.train()
        # 1. train with train dataset
        program.run(train_dataloader, config, net, optimizer, epoch_id,
                    'train')

        if not config["use_data_parallel"] or ParallelEnv().local_rank == 0:
            # 2. validate with validate dataset
            if config.validate and epoch_id % config.valid_interval == 0:
                net.eval()
                top1_acc = program.run(valid_dataloader, config, net, None,
                                       epoch_id, 'valid')
                if top1_acc > best_top1_acc:
                    best_top1_acc = top1_acc
                    message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
                        best_top1_acc, epoch_id)
                    logger.info("{:s}".format(logger.coloring(message, "RED")))
                    if epoch_id % config.save_interval == 0:

                        model_path = os.path.join(config.model_save_dir,
                                                  config.ARCHITECTURE["name"])
                        save_model(net, optimizer, model_path, "best_model")

            # 3. save the persistable model
            if epoch_id % config.save_interval == 0:
                model_path = os.path.join(config.model_save_dir,
                                          config.ARCHITECTURE["name"])
                save_model(net, optimizer, model_path, epoch_id)
W
WuHaobo 已提交
117 118 119 120


if __name__ == '__main__':
    args = parse_args()
121
    main(args)