提交 a52efec3 编写于 作者: littletomatodonkey's avatar littletomatodonkey

fix train.py

上级 093818a9
......@@ -23,7 +23,7 @@ logging.basicConfig(
def time_zone(sec, fmt):
real_time = datetime.datetime.now() + datetime.timedelta(hours=8)
real_time = datetime.datetime.now()
return real_time.timetuple()
......
......@@ -13,12 +13,13 @@
# limitations under the License.
from __future__ import absolute_import
import program
from ppcls.utils import logger
from ppcls.utils.save_load import init_model, save_model
from ppcls.utils.config import get_config
from paddle.distributed import ParallelEnv
import paddle
from ppcls.data import Reader
import paddle.fluid as fluid
from ppcls.utils.config import get_config
from ppcls.utils.save_load import init_model, save_model
from ppcls.utils import logger
import program
from __future__ import division
from __future__ import print_function
......@@ -53,69 +54,66 @@ def main(args):
# assign the place
use_gpu = config.get("use_gpu", True)
if use_gpu:
gpu_id = fluid.dygraph.ParallelEnv().dev_id
place = fluid.CUDAPlace(gpu_id)
gpu_id = ParallelEnv().dev_id
place = paddle.CUDAPlace(gpu_id)
else:
place = fluid.CPUPlace()
place = paddle.CPUPlace()
use_data_parallel = int(os.getenv("PADDLE_TRAINERS_NUM", 1)) != 1
config["use_data_parallel"] = use_data_parallel
with fluid.dygraph.guard(place):
net = program.create_model(config.ARCHITECTURE, config.classes_num)
optimizer = program.create_optimizer(
config, parameter_list=net.parameters())
if config["use_data_parallel"]:
strategy = fluid.dygraph.parallel.prepare_context()
net = fluid.dygraph.parallel.DataParallel(net, strategy)
# load model from checkpoint or pretrained model
init_model(config, net, optimizer)
train_dataloader = program.create_dataloader()
train_reader = Reader(config, 'train')()
train_dataloader.set_sample_list_generator(train_reader, place)
if config.validate:
valid_dataloader = program.create_dataloader()
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, place)
best_top1_acc = 0.0 # best top1 acc record
for epoch_id in range(config.epochs):
net.train()
# 1. train with train dataset
program.run(train_dataloader, config, net, optimizer, epoch_id,
'train')
if not config["use_data_parallel"] or fluid.dygraph.parallel.Env(
).local_rank == 0:
# 2. validate with validate dataset
if config.validate and epoch_id % config.valid_interval == 0:
net.eval()
top1_acc = program.run(valid_dataloader, config, net, None,
epoch_id, 'valid')
if top1_acc > best_top1_acc:
best_top1_acc = top1_acc
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
best_top1_acc, epoch_id)
logger.info("{:s}".format(
logger.coloring(message, "RED")))
if epoch_id % config.save_interval == 0:
model_path = os.path.join(
config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(net, optimizer, model_path,
"best_model")
# 3. save the persistable model
if epoch_id % config.save_interval == 0:
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(net, optimizer, model_path, epoch_id)
paddle.disable_static(place)
net = program.create_model(config.ARCHITECTURE, config.classes_num)
optimizer = program.create_optimizer(
config, parameter_list=net.parameters())
if config["use_data_parallel"]:
strategy = paddle.distributed.init_parallel_env()
net = paddle.DataParallel(net, strategy)
# load model from checkpoint or pretrained model
init_model(config, net, optimizer)
train_dataloader = program.create_dataloader()
train_reader = Reader(config, 'train')()
train_dataloader.set_sample_list_generator(train_reader, place)
if config.validate:
valid_dataloader = program.create_dataloader()
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, place)
best_top1_acc = 0.0 # best top1 acc record
for epoch_id in range(config.epochs):
net.train()
# 1. train with train dataset
program.run(train_dataloader, config, net, optimizer, epoch_id,
'train')
if not config["use_data_parallel"] or ParallelEnv().local_rank == 0:
# 2. validate with validate dataset
if config.validate and epoch_id % config.valid_interval == 0:
net.eval()
top1_acc = program.run(valid_dataloader, config, net, None,
epoch_id, 'valid')
if top1_acc > best_top1_acc:
best_top1_acc = top1_acc
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
best_top1_acc, epoch_id)
logger.info("{:s}".format(logger.coloring(message, "RED")))
if epoch_id % config.save_interval == 0:
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(net, optimizer, model_path, "best_model")
# 3. save the persistable model
if epoch_id % config.save_interval == 0:
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(net, optimizer, model_path, epoch_id)
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册